亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Transferability of Universal Adversarial Perturbation With Feature Disruption

利用 计算机科学 可转让性 对抗制 人工智能 深层神经网络 模式识别(心理学) 数据挖掘 算法 机器学习 人工神经网络 计算机安全 罗伊特
作者
Donghua Wang,Wen Yao,Tingsong Jiang,Xiaoqian Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 722-737 被引量:4
标识
DOI:10.1109/tip.2023.3345136
摘要

Deep neural networks (DNNs) are shown to be vulnerable to universal adversarial perturbations (UAP), a single quasi-imperceptible perturbation that deceives the DNNs on most input images. The current UAP methods can be divided into data-dependent and data-independent methods. The former exhibits weak transferability in black-box models due to overly relying on model-specific features. The latter shows inferior attack performance in white-box models as it fails to exploit the model's response information to benign images. To address the above issues, this paper proposes a novel universal adversarial attack to generate UAP with strong transferability by disrupting the model-agnostic features (e.g., edges or simple texture), which are invariant to the models. Specifically, we first devise an objective function to weaken the significant channel-wise features and strengthen the less significant channel-wise features, which are partitioned by the designed strategy. Furthermore, the proposed objective function eliminates the dependency on labeled samples, allowing us to utilize out-of-distribution (OOD) data to train UAP. To enhance the attack performance with limited training samples, we exploit the average gradient of the mini-batch input to update the UAP iteratively, which encourages the UAP to capture the local information inside the mini-batch input. In addition, we introduce the momentum term to accumulate the gradient information at each iterative step for the purpose of perceiving the global information over the training set. Finally, extensive experimental results demonstrate that the proposed methods outperform the existing UAP approaches. Additionally, we exhaustively investigate the transferability of the UAP across models, datasets, and tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
10秒前
MchemG应助科研通管家采纳,获得10
19秒前
量子星尘发布了新的文献求助30
25秒前
29秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
45秒前
量子星尘发布了新的文献求助10
50秒前
56秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
阿泽完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
tigerli发布了新的文献求助10
1分钟前
1分钟前
田様应助李亚宁采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
充电宝应助tigerli采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Yound发布了新的文献求助10
2分钟前
一路微笑完成签到,获得积分10
2分钟前
李亚宁发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
坚强白凝发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607588
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188