Rolling bearing fault diagnosis method using time-frequency information integration and multi-scale TransFusion network

可解释性 计算机科学 稳健性(进化) 人工智能 深度学习 人工神经网络 方位(导航) 断层(地质) 数据挖掘 机器学习 模式识别(心理学) 生物化学 化学 地震学 基因 地质学
作者
Zekun Wang,Zifei Xu,Chang Cai,Xiaodong Wang,Jianzhong Xu,Kezhong Shi,Xiaohui Zhong,Zhiqiang Liao,Qing Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:284: 111344-111344 被引量:5
标识
DOI:10.1016/j.knosys.2023.111344
摘要

Advances in deep learning methods have demonstrated remarkable development in diagnosing faults of rotating machinery. The currently popular deep neural networks suffer from design flaws in their network structure, leading to issues of long-term dependencies in fault diagnosis models built upon conventional deep neural networks. Consequently, such models exhibit insufficient global perceptual capabilities towards fault features. Furthermore, how accurately pre-trained models can diagnose faults is hugely impacted by changes in bearings' working conditions. To tackle the aforementioned issues, this study puts forth a multi-scale TransFusion (MSTF) model for diagnosing faults in rolling bearings under multiple operating conditions. Firstly, a time-frequency symmetric dot pattern transformation technique is designed to transform the original vibration signals into two-dimensional representations. This method can effectively highlight the distinctions between different fault types. Secondly, a multi-scale feature fusion module is established, which fully extracts low-level features from the time-frequency signals and reduces the complexity of the subsequent attention calculations. Meanwhile, relying on the advantages of the Transformer model in capturing global dependencies, the long-range periodic fault information is deeply mined. Finally, multi-head and multi-layer attention are visualized to enhance the interpretability of the model. After analyzing two case studies with both public and experimental datasets, the examination demonstrated that the developed model outperformed other state-of-the-art models. The diagnostic model developed in this study exhibits the ability to accurately diagnose bearing faults across multiple operating conditions while maintaining high robustness to signals contaminated with noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
英俊的铭应助小木子采纳,获得10
6秒前
脑洞疼应助七喜采纳,获得10
8秒前
超级的雪莲完成签到,获得积分10
9秒前
10秒前
你快睡吧完成签到,获得积分10
11秒前
嘻嘻完成签到,获得积分10
12秒前
111完成签到,获得积分10
13秒前
ronin完成签到,获得积分10
14秒前
qqesk发布了新的文献求助10
14秒前
丽莉完成签到,获得积分20
16秒前
17秒前
嘻嘻印完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
万能图书馆应助润喉糖采纳,获得30
19秒前
在水一方应助迪迦奥特曼采纳,获得10
19秒前
21秒前
jzyy完成签到 ,获得积分10
23秒前
科研螺丝发布了新的文献求助10
24秒前
26秒前
香蕉觅云应助超级的雪莲采纳,获得10
26秒前
27秒前
28秒前
28秒前
路路完成签到 ,获得积分10
30秒前
31秒前
rl_soccer发布了新的文献求助10
32秒前
QSJ完成签到,获得积分10
32秒前
ivy发布了新的文献求助10
32秒前
炳灿发布了新的文献求助10
35秒前
扶风阁主发布了新的文献求助10
37秒前
Anserbe完成签到,获得积分20
40秒前
dengcl-jack完成签到,获得积分10
43秒前
bkagyin应助Minerva采纳,获得10
43秒前
43秒前
44秒前
CodeCraft应助Anserbe采纳,获得10
44秒前
46秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043