A cluster-based disambiguation method using pose consistency verification for structure from motion

一致性(知识库) 人工智能 特征(语言学) 计算机视觉 计算机科学 匹配(统计) 模式识别(心理学) 姿势 旋转(数学) 数学 语言学 统计 哲学
作者
Ye Gong,Pengwei Zhou,C. Liu,Yan Yu,Jian Yao,Weiqi Yuan,Li Li
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:209: 398-414 被引量:1
标识
DOI:10.1016/j.isprsjprs.2024.02.016
摘要

Structure from motion (SfM) recovers scene structures and camera poses based on feature matching, and faces challenges from ambiguous scenes. There are a large number of ambiguous scenes in real environment, which contain many duplicate structures and textures. The ambiguity leads to incorrect feature matches between images with similar appearance, and makes geometric misalignment in SfM. To address this problem, recent methods have focused on investigating the inconsistencies in feature topology among multi-view images. However, the feature topology is directly derived from 2D images. Thus, it is susceptible to feature occlusion caused by changes in perspective. Therefore, we propose a new method that disambiguates scenes using pose consistency rather than feature consistency. The pose consistency is conducted in 3D geometric space which is less sensitive to feature occlusion. Thus, the pose consistency is more robust than feature consistency. Our core motivation lies that the incorrect matches between ambiguous images will cause pose deviation from the global poses generated by correct matches. To detect this pose deviation, we first combine local and global information of the scene to generate the global reliable camera poses. The local information of each image is obtained by image clustering, and it strengthens the global information that is represented as the verified maximum spanning tree of clusters. Then, the global poses serve as the reference for further pose consistency verification. The global poses also enable us to perform both rotation and translation consistency verification for uncertain matches. During the pose consistency verification, the pose deviation calculated on image-level may be too small to be noticed. Thus, we propose to perform pose consistency verification at cluster-level instead of image-level to amplify the pose deviation. In the experiments, we compared our approach with several state-of-the-art methods, including COLMAP, Geodesic-SfM and TC-SfM, on both ambiguous and regular datasets. The results demonstrate that our approach achieves the best robustness, only our approach succeeds on all ambiguous image sequences (14/14). The quantitative evaluation results on image sequences with ground truth also show that our approach achieves the best accuracy (average RMSE of translation = 0.109, average RMSE of rotation = 0.827) among all methods. The source code of our approach is publicly available at https://github.com/gongyeted/MA-SfM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111完成签到,获得积分10
1秒前
liu发布了新的文献求助10
1秒前
zhangqin发布了新的文献求助10
1秒前
2秒前
王呼呼完成签到,获得积分10
2秒前
JOJO完成签到,获得积分10
2秒前
cwy发布了新的文献求助10
3秒前
在水一方应助呢呢采纳,获得10
3秒前
LLLLL完成签到,获得积分20
3秒前
通天塔发布了新的文献求助10
3秒前
3秒前
4秒前
EricShen完成签到,获得积分10
4秒前
机智元珊发布了新的文献求助10
4秒前
4秒前
5秒前
陶醉的蜜蜂完成签到 ,获得积分10
5秒前
XinFeng驳回了asp应助
6秒前
Wdd完成签到,获得积分10
7秒前
谢雨嘉发布了新的文献求助10
7秒前
欢呼钧完成签到,获得积分10
8秒前
上官若男应助richer采纳,获得10
9秒前
打打应助勤劳的小牛蛙采纳,获得10
9秒前
呢呢完成签到,获得积分10
10秒前
10秒前
10秒前
明亮的八宝粥完成签到,获得积分10
11秒前
如意的向日葵完成签到,获得积分10
11秒前
12秒前
LLLLL关注了科研通微信公众号
12秒前
Hello应助快乐黑猫采纳,获得10
12秒前
koalamgj发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
deswin完成签到 ,获得积分10
18秒前
上官若男应助小鸟爱实验采纳,获得10
18秒前
科研通AI5应助Mike采纳,获得30
19秒前
19秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701957
求助须知:如何正确求助?哪些是违规求助? 3251981
关于积分的说明 9877418
捐赠科研通 2964034
什么是DOI,文献DOI怎么找? 1625427
邀请新用户注册赠送积分活动 770018
科研通“疑难数据库(出版商)”最低求助积分说明 742722