气凝胶
固相微萃取
萘
石墨烯
氯
复合数
环境化学
共价键
化学
富勒烯
化学工程
材料科学
有机化学
色谱法
气相色谱-质谱法
质谱法
复合材料
工程类
作者
Lansen Yang,Pengfei Li,Yehong Han,Dandan Han,Hongyuan Yan
标识
DOI:10.1016/j.jhazmat.2024.133909
摘要
The residues of polychlorinated naphthalenes (PCNs) produced in multiple industrial production and life processes are continuously entering environmental waters through atmospheric deposition and land drainage, and the water pollution caused by PCNs is continuing public concern due to their potential threat to aquatic ecosystems and public health. Herein, a new chlorine-functionalized covalent organic framework anchored graphene aerogel (COF-GA) was synthesized by covalent modification technology and used as fiber coating of solid-phase microextraction for synergically enhanced extraction of PCNs in environmental water. The extraction efficiency of COF-GA coated fiber was superior to commercial fiber due to the multiple interactions (π-π, hydrophobic interaction, and halogen bonding interaction). The COF-GA coated fiber has good stability, can avoid water vapor interference at 80 °C for a long time (30 −50 min) to maintain adsorption equilibrium, and can be reused at least 96 times. Combined with gas chromatography-tandem mass spectrometry, a sensitive method for the high-efficient enrichment (enrichment factors were 501 −7453 folds) and ultra-sensitive detection (LODs were 0.001 −0.428 pg/mL) of PCNs in environmental water was established. The enrichment factor for PCNs is significantly higher than in previous studies. This proposed method provides new technical support for the daily monitoring and risk assessment of trace PCNs in environmental water.
科研通智能强力驱动
Strongly Powered by AbleSci AI