The d‐band energy level splitting of ferric group (Fe, Co, Ni) metals drives the adsorption‐conversion of polysulfides

分离器(采油) 吸附 阳极 化学工程 过渡金属 碳纳米管 氧化还原 催化作用 材料科学 化学 无机化学 纳米技术 电极 物理化学 有机化学 热力学 物理 工程类
作者
Tong Li,Yajie Sun,Kaixiang Shi,Weilun Qin,Hangyi Chen,Junhao Li,Yuying Zheng,Quanbing Liu,Zhenxing Liang
出处
期刊:Aiche Journal [Wiley]
卷期号:70 (3) 被引量:8
标识
DOI:10.1002/aic.18327
摘要

Abstract The notorious lithium polysulfides (LiPSs) shuttle effect, which results in low capacity, subpar rate performance, and quick capacity deterioration, has severely restricted the practical applications of lithium sulfur (Li‐S) batteries. Therefore, it is very important for modified materials to promote thermodynamics and redox kinetics in the entrapping‐conversion process of polysulfides. Density functional theory (DFT) calculations show that ferric group (Fe, Co, Ni) transition metals not only provide moderate binding contacts with LiPSs but also act as an active catalyst in the spontaneous and sequential lithiation of S 8 to Li 2 S by d‐band energy level splitting, and quick migration of Li ions can be operated on their surface, enhancing the utilization of LiPSs. Experimentally, felicitously‐fabricated ferric group (Fe, Co, Ni) transition metals encapsulated in nitrogen‐doped carbon nanotubes (M@NCNT) electrocatalysts were introduced into Li‐S batteries via separator functionalization. Actually, the experiments demonstrated that the excellent shuttle effect hindering was enabled. Consistent with theoretical predictions, Li‐S batteries with Ni@NCNT modified separators had significantly improved rate capacity and cycling stability. The cells with Ni@NCNT were able to achieve a high initial discharge capacity of 1035 mAh g −1 and a capacity retention rate of 70% at 500 discharges at 1.0 C with a 0.060% capacity decay each cycle, performing considerable cycle‐life with state‐of‐the‐art separators. Our work demonstrated a realistic separator‐modified strategy of d‐band energy level splitting from ferric group metals for high‐performance and long‐life Li‐S batteries, further propelling Li‐S battery commercialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
愉快问枫应助yf采纳,获得10
1秒前
1秒前
小蘑菇应助鳗鱼歌曲采纳,获得10
1秒前
SciGPT应助拉长的问晴采纳,获得10
1秒前
1111完成签到 ,获得积分10
1秒前
浮夸发布了新的文献求助10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
lambda应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
吴雨峰完成签到,获得积分10
4秒前
sai完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
wenlin发布了新的文献求助30
5秒前
5秒前
卡不卡不完成签到,获得积分10
5秒前
小二郎应助和谐雨竹采纳,获得10
5秒前
小王发布了新的文献求助10
5秒前
顾矜应助s1kl采纳,获得10
6秒前
6秒前
8秒前
9秒前
10秒前
史迪仔发布了新的文献求助10
10秒前
10秒前
zhai完成签到,获得积分10
11秒前
mhl11应助勤劳的颤采纳,获得10
13秒前
科研r发布了新的文献求助10
13秒前
wanzhitao发布了新的文献求助10
13秒前
纯真的无声完成签到 ,获得积分10
14秒前
龙腾岁月完成签到 ,获得积分10
14秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263114
求助须知:如何正确求助?哪些是违规求助? 2903756
关于积分的说明 8326840
捐赠科研通 2573786
什么是DOI,文献DOI怎么找? 1398511
科研通“疑难数据库(出版商)”最低求助积分说明 654203
邀请新用户注册赠送积分活动 632742