亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognition of Depression from Video Frames by using Convolutional Neural Networks

计算机科学 卷积神经网络 人工智能 心情 联营 深度学习 特征(语言学) 面部表情 模式识别(心理学) 心理学 语言学 哲学 精神科
作者
Jianwen WANG,Xiao Sha
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:14 (11)
标识
DOI:10.14569/ijacsa.2023.01411116
摘要

The disturbances of the mood are relevant to the emotions. Specifically, the behaviour of persons with disturbances of mood, like the depression of the unipolar, displays a powerful correlation of the temporal by the emotional girths of the arousal and the valence. Moreover, the psychiatrists and the psychologists take into account the audible signs of the facial and the audible signs of the voice when they assess the condition of the patient. Depression makes audible behaviours like weak expressions, the validation of the contact of the eye and the use of little flat-voiced sentences. Artificial intelligence has combined various automated frameworks for the detection of depression severity by using hand-crafted features. The method of deep learning has been successfully applied to detect depression. In the current article, a federate architecture, which is the network of the neural of the deep convolutional basis on the attention of global, is proposed to diagnose the depression. This method uses CNN with the attention mechanism and also uses the integration of the weighted spatial pyramid pooling for the learning of the deep global representation. In this method, two branches are introduced: the CNN based on local attention focuses on the patches of the local, while the CNN based on global attention attains the universal patterns from the whole face area. For taking the data of the supplementary among two parts, a CNN basis on the local-global attention is proposed. The designed experiments have been done in two datasets, which are AVEC2014 and AVEC2013. The results show that our presented approach can extract the depression patterns from the video frames. Also, the outcomes display that our presented approach is superior to the best methods based on the video for the detection of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longxingbo发布了新的文献求助10
3秒前
15秒前
34秒前
37秒前
54秒前
GQ完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
白嫖论文完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
gszy1975完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Polymer72应助杨泽宇采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
上官若男应助cc采纳,获得10
5分钟前
iris完成签到,获得积分10
6分钟前
6分钟前
闪闪的YOSH完成签到,获得积分10
6分钟前
iris发布了新的文献求助10
6分钟前
cc发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000782
关于积分的说明 8793690
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471955
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313