Work-function-induced interfacial built-in electric field optimized electronic structure of V-CoSx@NiTe as high capacity and robust electrode for supercapacitors

材料科学 纳米棒 超级电容器 光电子学 电极 纳米技术 工作职能 无定形固体 异质结 电容 化学 结晶学 图层(电子) 物理化学
作者
Ke Zhang,Endong Yang,Yingping Zheng,Siyuan Wang,Yuhan Xie,Jinxi Chen,Yongbing Lou,Lili Song
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:480: 148030-148030 被引量:15
标识
DOI:10.1016/j.cej.2023.148030
摘要

The pursuit of achieving high energy density and exceptional stability in supercapacitors presents both allure and challenge. Herein, we strategically engineered hierarchical V-CoSx@NiTe core-shell heterojunction nanorod arrays, with V-doped amorphous CoSx nanosheets as the shell and one-dimensional (1D) NiTe nanorods as the core on nickel foam (NF). Theoretical computations elucidated the disparate intrinsic work functions of V-CoSx and NiTe, culminating in a robust built-in electric field at the interface. This field orchestrated interfacial charge distribution, expediting electron transport and optimizing OH– adsorption. V doping enhanced electronic states density at the Fermi energy level of CoSx and introduced new reaction sites. Additionally, the good hydrophilic properties and unique hierarchical core-shell morphology of the amorphous V-CoSx@NiTe/NF electrodes were favorable for increasing the specific surface area, improving the structural stability and facilitating the diffusion of OH–. Consequently, V-CoSx@NiTe/NF attained an impressive areal capacitance of 10.52 F cm−2 at 2 mA cm−2, preserving energy storage performance, morphology, and composition across 15,000 cycles. An asymmetric supercapacitor (ASC) device constructed with V-CoSx@NiTe/NF as the positive electrode and commercial activated carbon (AC) as the negative electrode exhibited energy (power) density of 0.42 mWh cm−2 (1.63 mW cm−2), and maintained ∼100 % capacity after 10,000 cycles. Significantly, a single device powered both a fan and a light bulb, while two devices in series illuminated a blue light-emitting diode (LED) for up to 2 h. This investigation introduces an innovative strategy for designing high-performance supercapacitor anode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soda饼干完成签到 ,获得积分10
2秒前
可问春风完成签到,获得积分10
3秒前
Daybreak完成签到 ,获得积分10
9秒前
越野蟹完成签到,获得积分10
9秒前
15秒前
laber完成签到,获得积分0
16秒前
木拉发布了新的文献求助10
21秒前
雨后完成签到 ,获得积分10
21秒前
21秒前
科目三应助嘻嘻哈哈采纳,获得10
22秒前
能干靖儿应助嘻嘻哈哈采纳,获得40
22秒前
能干靖儿应助嘻嘻哈哈采纳,获得60
22秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
22秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
22秒前
kyle完成签到 ,获得积分10
27秒前
三杠完成签到 ,获得积分10
30秒前
无限晓蓝完成签到 ,获得积分10
31秒前
GLv完成签到,获得积分10
31秒前
彭于晏应助边边角角落落采纳,获得10
32秒前
yinshan完成签到 ,获得积分10
33秒前
烂漫笑晴完成签到 ,获得积分10
33秒前
修仙中应助科研通管家采纳,获得10
34秒前
修仙中应助科研通管家采纳,获得10
34秒前
正己化人应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
修仙中应助科研通管家采纳,获得10
34秒前
甜芋应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
小杭76应助科研通管家采纳,获得10
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
小杭76应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
34秒前
匆匆赶路人完成签到 ,获得积分0
35秒前
Ly完成签到 ,获得积分10
35秒前
小谭完成签到 ,获得积分10
35秒前
37秒前
Jeremy完成签到 ,获得积分10
37秒前
Matberry完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208