Deep learning and big data mining for Metal–Organic frameworks with high performance for simultaneous desulfurization and carbon capture

烟气脱硫 吸附 金属有机骨架 碳纤维 化学工程 环境科学 材料科学 化学 工程类 有机化学 复合材料 复合数
作者
Kexin Guan,Fangyi Xu,Xiaoshan Huang,Yu Li,Shuya Guo,Yizhen Situ,Chen You,Jianming Hu,Zili Liu,Hong Liang,Xin Zhu,Yufang Wu,Zhiwei Qiao
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:662: 941-952 被引量:17
标识
DOI:10.1016/j.jcis.2024.02.098
摘要

Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal–organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
失眠的霸完成签到,获得积分10
1秒前
RHLVE应助戚薇采纳,获得20
1秒前
1秒前
wjx发布了新的文献求助10
1秒前
shuangcheng发布了新的文献求助10
1秒前
charm12发布了新的文献求助10
1秒前
研友_VZG7GZ应助fyfly采纳,获得10
2秒前
2秒前
全糖完成签到,获得积分10
2秒前
吴志新完成签到,获得积分10
2秒前
心旷神怡发布了新的文献求助10
2秒前
Jiaocm完成签到,获得积分10
3秒前
海的蓝色是水完成签到,获得积分20
3秒前
天天快乐应助明天过后采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
所所应助吴真好采纳,获得10
5秒前
乐观小之应助wogua采纳,获得10
5秒前
隐形曼青应助wogua采纳,获得10
5秒前
6秒前
清脆惜寒应助Wang采纳,获得30
6秒前
标致乐双发布了新的文献求助10
7秒前
Catalina_S应助太阳采纳,获得20
7秒前
华仔应助刘桑桑采纳,获得10
7秒前
8秒前
9秒前
深情安青应助123456采纳,获得10
9秒前
清爽千亦完成签到 ,获得积分10
9秒前
9秒前
周周完成签到 ,获得积分10
10秒前
读书妖精文亭逐完成签到,获得积分10
10秒前
10秒前
管歌发布了新的文献求助10
10秒前
leez完成签到,获得积分10
11秒前
11秒前
12秒前
WTT发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646