Deep learning and big data mining for Metal–Organic frameworks with high performance for simultaneous desulfurization and carbon capture

烟气脱硫 吸附 金属有机骨架 碳纤维 化学工程 环境科学 材料科学 化学 工程类 有机化学 复合材料 复合数
作者
Kexin Guan,Fangyi Xu,Xiaoshan Huang,Yu Li,Shuya Guo,Yizhen Situ,Chen You,Jianming Hu,Zili Liu,Hong Liang,Xin Zhu,Yufang Wu,Zhiwei Qiao
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:662: 941-952 被引量:13
标识
DOI:10.1016/j.jcis.2024.02.098
摘要

Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal–organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuminru完成签到,获得积分10
2秒前
3秒前
Ava应助lzx采纳,获得10
4秒前
浮熙发布了新的文献求助10
5秒前
6秒前
7秒前
英姑应助追忆采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
zxx5313491完成签到,获得积分10
10秒前
fuxixixi发布了新的文献求助10
11秒前
11秒前
whisper发布了新的文献求助10
11秒前
hehe完成签到,获得积分10
11秒前
勤恳绝义发布了新的文献求助10
12秒前
12秒前
李琳赛发布了新的文献求助30
13秒前
香蕉觅云应助jinzhen采纳,获得10
13秒前
zxx5313491发布了新的文献求助10
14秒前
14秒前
闪闪的YOSH完成签到,获得积分10
15秒前
17秒前
17秒前
英俊的铭应助仂尤采纳,获得10
18秒前
18秒前
fuxixixi完成签到,获得积分10
19秒前
领导范儿应助伯赏笑白采纳,获得10
19秒前
21秒前
21秒前
脑洞疼应助自然的芙蓉采纳,获得10
22秒前
yy发布了新的文献求助10
22秒前
zym完成签到,获得积分10
22秒前
Hello应助简单千秋采纳,获得10
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
25秒前
坦率的含海完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824