Deep learning and big data mining for Metal–Organic frameworks with high performance for simultaneous desulfurization and carbon capture

烟气脱硫 吸附 金属有机骨架 碳纤维 化学工程 环境科学 材料科学 化学 工程类 有机化学 复合材料 复合数
作者
Kexin Guan,Fangyi Xu,Xiaoshan Huang,Yu Li,Shuya Guo,Yizhen Situ,Chen You,Jianming Hu,Zili Liu,Hong Liang,Xin Zhu,Yufang Wu,Zhiwei Qiao
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:662: 941-952 被引量:17
标识
DOI:10.1016/j.jcis.2024.02.098
摘要

Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal–organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
锅锅发布了新的文献求助10
2秒前
科研人河北完成签到,获得积分20
6秒前
7秒前
7秒前
调皮的巧凡完成签到,获得积分10
8秒前
朝朝发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
12秒前
13秒前
13秒前
moon完成签到,获得积分20
14秒前
wyt发布了新的文献求助10
14秒前
爱与感谢完成签到 ,获得积分10
15秒前
verbal2005发布了新的文献求助10
15秒前
钟山发布了新的文献求助10
15秒前
领导范儿应助自信书兰采纳,获得10
16秒前
自然翠阳完成签到 ,获得积分10
17秒前
HHHu完成签到,获得积分10
18秒前
lizike发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
谢大喵发布了新的文献求助10
21秒前
wyt完成签到,获得积分10
22秒前
南芜山为伴完成签到,获得积分10
23秒前
24秒前
26秒前
自信书兰发布了新的文献求助10
30秒前
30秒前
路越发布了新的文献求助10
32秒前
NexusExplorer应助三无采纳,获得10
32秒前
33秒前
36秒前
贝壳完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
Jasper应助典雅的俊驰采纳,获得10
40秒前
只因不只因完成签到,获得积分10
41秒前
大个应助褚呦采纳,获得10
44秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144545
求助须知:如何正确求助?哪些是违规求助? 4342237
关于积分的说明 13522560
捐赠科研通 4182757
什么是DOI,文献DOI怎么找? 2293639
邀请新用户注册赠送积分活动 1294207
关于科研通互助平台的介绍 1236955