Deep learning and big data mining for Metal–Organic frameworks with high performance for simultaneous desulfurization and carbon capture

烟气脱硫 吸附 金属有机骨架 碳纤维 化学工程 环境科学 材料科学 化学 工程类 有机化学 复合材料 复合数
作者
Kexin Guan,Fangyi Xu,Xiaoshan Huang,Yu Li,Shuya Guo,Yizhen Situ,Chen You,Jianming Hu,Zili Liu,Hong Liang,Xin Zhu,Yufang Wu,Zhiwei Qiao
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:662: 941-952 被引量:9
标识
DOI:10.1016/j.jcis.2024.02.098
摘要

Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal–organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助阿美采纳,获得30
刚刚
科研通AI2S应助机智小虾米采纳,获得10
1秒前
充电宝应助Xx.采纳,获得10
2秒前
zhangscience发布了新的文献求助10
3秒前
深情安青应助大方嵩采纳,获得10
4秒前
英俊的铭应助大方嵩采纳,获得10
4秒前
李还好完成签到,获得积分10
5秒前
满意的柏柳完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
buno应助88采纳,获得10
8秒前
9秒前
三千世界完成签到,获得积分10
9秒前
9秒前
愉快的访旋完成签到,获得积分10
10秒前
Alpha完成签到,获得积分10
11秒前
大大发布了新的文献求助30
11秒前
翠翠发布了新的文献求助10
12秒前
半山发布了新的文献求助10
13秒前
13秒前
天天快乐应助CO2采纳,获得10
13秒前
隐形曼青应助junzilan采纳,获得10
14秒前
Dksido发布了新的文献求助10
14秒前
15秒前
思源应助卓哥采纳,获得10
15秒前
mysci完成签到,获得积分10
18秒前
19秒前
Quzhengkai发布了新的文献求助10
20秒前
20秒前
21秒前
落寞晓灵完成签到,获得积分10
21秒前
ORAzzz应助翠翠采纳,获得20
22秒前
zoe完成签到,获得积分10
22秒前
习习应助学术小白采纳,获得10
22秒前
23秒前
24秒前
tianny关注了科研通微信公众号
25秒前
25秒前
CO2发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808