A Review of deep learning methods for denoising of medical low-dose CT images

人工智能 非本地手段 降噪 计算机科学 深度学习 图像去噪 图像质量 视频去噪 噪音(视频) 模式识别(心理学) 图像(数学) 多视点视频编码 视频跟踪 对象(语法)
作者
Ju Zhang,Weiwei Gong,Lieli Ye,Fanghong Wang,Zhibo Shangguan,Yun Cheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108112-108112 被引量:37
标识
DOI:10.1016/j.compbiomed.2024.108112
摘要

To prevent patients from being exposed to excess of radiation in CT imaging, the most common solution is to decrease the radiation dose by reducing the X-ray, and thus the quality of the resulting low-dose CT images (LDCT) is degraded, as evidenced by more noise and streaking artifacts. Therefore, it is important to maintain high quality CT image while effectively reducing radiation dose. In recent years, with the rapid development of deep learning technology, deep learning-based LDCT denoising methods have become quite popular because of their data-driven and high-performance features to achieve excellent denoising results. However, to our knowledge, no relevant article has so far comprehensively introduced and reviewed advanced deep learning denoising methods such as Transformer structures in LDCT denoising tasks. Therefore, based on the literatures related to LDCT image denoising published from year 2016–2023, and in particular from 2020 to 2023, this study presents a systematic survey of current situation, and challenges and future research directions in LDCT image denoising field. Four types of denoising networks are classified according to the network structure: CNN-based, Encoder-Decoder-based, GAN-based, and Transformer-based denoising networks, and each type of denoising network is described and summarized from the perspectives of structural features and denoising performances. Representative deep-learning denoising methods for LDCT are experimentally compared and analyzed. The study results show that CNN-based denoising methods capture image details efficiently through multi-level convolution operation, demonstrating superior denoising effects and adaptivity. Encoder-decoder networks with MSE loss, achieve outstanding results in objective metrics. GANs based methods, employing innovative generators and discriminators, obtain denoised images that exhibit perceptually a closeness to NDCT. Transformer-based methods have potential for improving denoising performances due to their powerful capability in capturing global information. Challenges and opportunities for deep learning based LDCT denoising are analyzed, and future directions are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助BYXGZ采纳,获得10
刚刚
科研小白完成签到,获得积分10
1秒前
英俊的铭应助zero采纳,获得10
1秒前
小淇完成签到,获得积分10
1秒前
Orange应助许晴采纳,获得10
2秒前
2秒前
高高完成签到,获得积分10
2秒前
you完成签到,获得积分10
2秒前
完美世界应助六子采纳,获得10
2秒前
way完成签到,获得积分10
3秒前
3秒前
4秒前
Dreamchaser完成签到,获得积分10
4秒前
Seona完成签到,获得积分10
4秒前
wxiao完成签到,获得积分10
4秒前
Jally完成签到 ,获得积分10
4秒前
5秒前
祺号花店发布了新的文献求助10
6秒前
Ting完成签到,获得积分10
6秒前
青云完成签到,获得积分10
6秒前
qdong完成签到 ,获得积分10
6秒前
6秒前
赵佩奇完成签到,获得积分10
6秒前
三白眼完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
云ssss完成签到,获得积分10
8秒前
8秒前
hr完成签到 ,获得积分10
8秒前
moyacheung发布了新的文献求助10
9秒前
9秒前
9秒前
英姑应助大好河山采纳,获得10
10秒前
10秒前
10秒前
peili发布了新的文献求助10
11秒前
11秒前
hnl完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676