A Review of deep learning methods for denoising of medical low-dose CT images

人工智能 非本地手段 降噪 计算机科学 深度学习 图像去噪 图像质量 视频去噪 噪音(视频) 模式识别(心理学) 图像(数学) 视频跟踪 对象(语法) 多视点视频编码
作者
Ju Zhang,Weiwei Gong,Lieli Ye,Fanghong Wang,Zhibo Shangguan,Yun Cheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108112-108112 被引量:19
标识
DOI:10.1016/j.compbiomed.2024.108112
摘要

To prevent patients from being exposed to excess of radiation in CT imaging, the most common solution is to decrease the radiation dose by reducing the X-ray, and thus the quality of the resulting low-dose CT images (LDCT) is degraded, as evidenced by more noise and streaking artifacts. Therefore, it is important to maintain high quality CT image while effectively reducing radiation dose. In recent years, with the rapid development of deep learning technology, deep learning-based LDCT denoising methods have become quite popular because of their data-driven and high-performance features to achieve excellent denoising results. However, to our knowledge, no relevant article has so far comprehensively introduced and reviewed advanced deep learning denoising methods such as Transformer structures in LDCT denoising tasks. Therefore, based on the literatures related to LDCT image denoising published from year 2016–2023, and in particular from 2020 to 2023, this study presents a systematic survey of current situation, and challenges and future research directions in LDCT image denoising field. Four types of denoising networks are classified according to the network structure: CNN-based, Encoder-Decoder-based, GAN-based, and Transformer-based denoising networks, and each type of denoising network is described and summarized from the perspectives of structural features and denoising performances. Representative deep-learning denoising methods for LDCT are experimentally compared and analyzed. The study results show that CNN-based denoising methods capture image details efficiently through multi-level convolution operation, demonstrating superior denoising effects and adaptivity. Encoder-decoder networks with MSE loss, achieve outstanding results in objective metrics. GANs based methods, employing innovative generators and discriminators, obtain denoised images that exhibit perceptually a closeness to NDCT. Transformer-based methods have potential for improving denoising performances due to their powerful capability in capturing global information. Challenges and opportunities for deep learning based LDCT denoising are analyzed, and future directions are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月流火应助lym97采纳,获得10
刚刚
刚刚
JamesPei应助峰宝宝采纳,获得10
1秒前
Wxl完成签到 ,获得积分10
1秒前
烟花应助mingyu采纳,获得10
1秒前
愉博完成签到,获得积分10
2秒前
SteveRogers发布了新的文献求助10
3秒前
周周发布了新的文献求助10
3秒前
corp_9完成签到,获得积分10
3秒前
sanlunainiu发布了新的文献求助10
4秒前
4秒前
4秒前
sslou完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Calla_ran发布了新的文献求助10
6秒前
现代的盼易完成签到,获得积分20
6秒前
Kismet发布了新的文献求助10
7秒前
hans完成签到,获得积分20
7秒前
隐形曼青应助冷酷的天德采纳,获得10
7秒前
Morrow发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
FashionBoy应助还单身的惜文采纳,获得10
8秒前
木木完成签到,获得积分10
8秒前
恒星完成签到 ,获得积分10
9秒前
科研通AI5应助柒钺采纳,获得10
9秒前
9秒前
行云岛发布了新的文献求助10
9秒前
9秒前
搜集达人应助海风吹采纳,获得10
11秒前
简单水蓉完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
朴实尔容发布了新的文献求助10
13秒前
sanlunainiu完成签到,获得积分10
13秒前
14秒前
suzhaoming发布了新的文献求助10
14秒前
kk发布了新的文献求助10
14秒前
15秒前
现代的盼易关注了科研通微信公众号
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662735
求助须知:如何正确求助?哪些是违规求助? 3223515
关于积分的说明 9752041
捐赠科研通 2933470
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771