A Review of deep learning methods for denoising of medical low-dose CT images

人工智能 非本地手段 降噪 计算机科学 深度学习 图像去噪 图像质量 视频去噪 噪音(视频) 模式识别(心理学) 图像(数学) 多视点视频编码 视频跟踪 对象(语法)
作者
Ju Zhang,Weiwei Gong,Lieli Ye,Fanghong Wang,Zhibo Shangguan,Yun Cheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108112-108112 被引量:13
标识
DOI:10.1016/j.compbiomed.2024.108112
摘要

To prevent patients from being exposed to excess of radiation in CT imaging, the most common solution is to decrease the radiation dose by reducing the X-ray, and thus the quality of the resulting low-dose CT images (LDCT) is degraded, as evidenced by more noise and streaking artifacts. Therefore, it is important to maintain high quality CT image while effectively reducing radiation dose. In recent years, with the rapid development of deep learning technology, deep learning-based LDCT denoising methods have become quite popular because of their data-driven and high-performance features to achieve excellent denoising results. However, to our knowledge, no relevant article has so far comprehensively introduced and reviewed advanced deep learning denoising methods such as Transformer structures in LDCT denoising tasks. Therefore, based on the literatures related to LDCT image denoising published from year 2016–2023, and in particular from 2020 to 2023, this study presents a systematic survey of current situation, and challenges and future research directions in LDCT image denoising field. Four types of denoising networks are classified according to the network structure: CNN-based, Encoder-Decoder-based, GAN-based, and Transformer-based denoising networks, and each type of denoising network is described and summarized from the perspectives of structural features and denoising performances. Representative deep-learning denoising methods for LDCT are experimentally compared and analyzed. The study results show that CNN-based denoising methods capture image details efficiently through multi-level convolution operation, demonstrating superior denoising effects and adaptivity. Encoder-decoder networks with MSE loss, achieve outstanding results in objective metrics. GANs based methods, employing innovative generators and discriminators, obtain denoised images that exhibit perceptually a closeness to NDCT. Transformer-based methods have potential for improving denoising performances due to their powerful capability in capturing global information. Challenges and opportunities for deep learning based LDCT denoising are analyzed, and future directions are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助西营采纳,获得10
1秒前
小越越完成签到,获得积分10
1秒前
3秒前
4秒前
4秒前
8秒前
hxd发布了新的文献求助10
8秒前
上官若男应助短腿萝莉采纳,获得10
9秒前
11秒前
走弓发布了新的文献求助10
11秒前
13秒前
14秒前
汉堡包应助shim采纳,获得10
14秒前
15秒前
16秒前
饼子发布了新的文献求助10
16秒前
18秒前
宜醉宜游宜睡应助niuniu采纳,获得10
18秒前
拨云见日发布了新的文献求助10
19秒前
亓官煜之发布了新的文献求助10
20秒前
Jasper应助走弓采纳,获得10
21秒前
21秒前
22秒前
香蕉君达发布了新的文献求助10
22秒前
23秒前
CodeCraft应助KEHUGE采纳,获得10
23秒前
甜美采萱发布了新的文献求助10
24秒前
言辞完成签到,获得积分10
25秒前
InvokeR发布了新的文献求助30
25秒前
Ava应助明亮的以蓝采纳,获得10
25秒前
传奇3应助NolloN采纳,获得10
26秒前
赘婿应助欢呼的傲旋采纳,获得10
26秒前
不许放羊完成签到 ,获得积分10
26秒前
27秒前
短腿萝莉发布了新的文献求助10
27秒前
Kenzonvay发布了新的文献求助10
28秒前
heart发布了新的文献求助10
28秒前
29秒前
汉堡包应助yduan采纳,获得10
31秒前
好纠结完成签到,获得积分10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248499
求助须知:如何正确求助?哪些是违规求助? 2891839
关于积分的说明 8268971
捐赠科研通 2559871
什么是DOI,文献DOI怎么找? 1388724
科研通“疑难数据库(出版商)”最低求助积分说明 650815
邀请新用户注册赠送积分活动 627782