清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Review of deep learning methods for denoising of medical low-dose CT images

人工智能 非本地手段 降噪 计算机科学 深度学习 图像去噪 图像质量 视频去噪 噪音(视频) 模式识别(心理学) 图像(数学) 视频跟踪 对象(语法) 多视点视频编码
作者
Ju Zhang,Weiwei Gong,Lieli Ye,Fanghong Wang,Zhibo Shangguan,Yun Cheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108112-108112 被引量:31
标识
DOI:10.1016/j.compbiomed.2024.108112
摘要

To prevent patients from being exposed to excess of radiation in CT imaging, the most common solution is to decrease the radiation dose by reducing the X-ray, and thus the quality of the resulting low-dose CT images (LDCT) is degraded, as evidenced by more noise and streaking artifacts. Therefore, it is important to maintain high quality CT image while effectively reducing radiation dose. In recent years, with the rapid development of deep learning technology, deep learning-based LDCT denoising methods have become quite popular because of their data-driven and high-performance features to achieve excellent denoising results. However, to our knowledge, no relevant article has so far comprehensively introduced and reviewed advanced deep learning denoising methods such as Transformer structures in LDCT denoising tasks. Therefore, based on the literatures related to LDCT image denoising published from year 2016–2023, and in particular from 2020 to 2023, this study presents a systematic survey of current situation, and challenges and future research directions in LDCT image denoising field. Four types of denoising networks are classified according to the network structure: CNN-based, Encoder-Decoder-based, GAN-based, and Transformer-based denoising networks, and each type of denoising network is described and summarized from the perspectives of structural features and denoising performances. Representative deep-learning denoising methods for LDCT are experimentally compared and analyzed. The study results show that CNN-based denoising methods capture image details efficiently through multi-level convolution operation, demonstrating superior denoising effects and adaptivity. Encoder-decoder networks with MSE loss, achieve outstanding results in objective metrics. GANs based methods, employing innovative generators and discriminators, obtain denoised images that exhibit perceptually a closeness to NDCT. Transformer-based methods have potential for improving denoising performances due to their powerful capability in capturing global information. Challenges and opportunities for deep learning based LDCT denoising are analyzed, and future directions are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意2023完成签到 ,获得积分10
5秒前
alexlpb完成签到,获得积分0
6秒前
元水云完成签到,获得积分10
9秒前
斯文败类应助科研通管家采纳,获得20
9秒前
风清扬发布了新的文献求助10
20秒前
21秒前
嘟嘟噜发布了新的文献求助10
26秒前
华仔应助嘟嘟噜采纳,获得10
33秒前
yu完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助100
44秒前
Akim应助舒适以松采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
kyle完成签到 ,获得积分10
2分钟前
2分钟前
LioXH完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
LioXH发布了新的文献求助10
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
2分钟前
大水完成签到 ,获得积分10
2分钟前
Ray完成签到 ,获得积分10
2分钟前
舒适以松发布了新的文献求助10
3分钟前
3分钟前
自然代亦完成签到 ,获得积分10
3分钟前
3分钟前
Yjj发布了新的文献求助20
3分钟前
坤坤完成签到 ,获得积分10
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
外向的芒果完成签到 ,获得积分10
3分钟前
3分钟前
Lexi完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
行走完成签到,获得积分10
3分钟前
gwbk完成签到,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015451
求助须知:如何正确求助?哪些是违规求助? 3555379
关于积分的说明 11318024
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012