Flood forecasting based on radar precipitation nowcasting using U-net and its improved models

临近预报 降水 雷达 洪水预报 气象学 环境科学 大洪水 定量降水预报 气候学 气象雷达 水文学(农业) 地质学 计算机科学 地理 电信 岩土工程 考古
作者
Jianzhu Li,Leijing Li,Ting Zhang,Haoyu Xing,Yi Shi,Zhixia Li,Congmei Wang,Jin Liu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:632: 130871-130871 被引量:2
标识
DOI:10.1016/j.jhydrol.2024.130871
摘要

Accurate and timely short-term precipitation nowcasting is important for achieving reliable flood forecasting. The data-driven approaches have performed well in radar echo extrapolation to nowcast precipitation. In this paper, U-Net and its improved models, including SmaAt-Unet, Nested-Unet, and U-Net 3Plus were applied to perform radar echo extrapolation and precipitation nowcasting for 0.5 h, 1 h, and 2 h lead times of typical rainfall processes. The nowcasted precipitation was used as input to the HEC-HMS hydrological model for flood forecasting to compare the effect of different structural improvements to U-Net on the accuracy of flood forecasting. The results demonstrated that Nested-Unet and U-Net 3Plus aided in enhancing the accuracy of the extrapolation of moderate intensity radar echoes. With fewer discrepancies and better correlation with measured rainfall, the U-Net and U-Net 3Plus precipitation nowcasting results also produced improved flood forecasting outcome. The precipitation nowcasting and flood forecasting for SmaAt-Unet were slightly worse than other models; the relative errors of both flood peak and depth for Nested-Unet at 0.5 h lead time were less than 20 %, showing a good performance. Moreover, in a separate control experiment, the accuracy of the echo extrapolation was significantly decreased when convolutional block attention module (CBAM) was added to each model. However, all models have better extrapolation accuracy than the basic ConvLSTM. In general, Nested-Unet and U-Net 3Plus were helpful to improve the accuracy of precipitation nowcasting and flood forecasting, and the forecasted flood with 0.5 h and 1 h lead times could match the actual flood processes, but the peak discharge from nowcasting with 2 h lead time were severely underestimated, while the peak occurrence time could be forecasted correctly. These conclusions and attempts can provide effective guidelines for regional precipitation nowcasting and flood forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
galioo3000发布了新的文献求助200
2秒前
踏实乐枫关注了科研通微信公众号
2秒前
开心发布了新的文献求助10
3秒前
孝铮发布了新的文献求助10
5秒前
fff完成签到 ,获得积分10
6秒前
FashionBoy应助xy采纳,获得10
6秒前
知北完成签到,获得积分10
7秒前
巴拉巴拉发布了新的文献求助10
8秒前
情怀应助孝铮采纳,获得10
9秒前
9秒前
InsomniaFlight完成签到,获得积分10
10秒前
十七发布了新的文献求助10
12秒前
科研通AI2S应助热心的寒天采纳,获得10
12秒前
MJ完成签到,获得积分10
13秒前
凤凤发布了新的文献求助10
13秒前
现实的南烟完成签到,获得积分10
15秒前
唯心如意完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助晨曦采纳,获得10
17秒前
18秒前
cathyliu完成签到,获得积分10
18秒前
Lyu发布了新的文献求助10
19秒前
20秒前
liangguangyuan完成签到 ,获得积分10
20秒前
从容芮应助美好斓采纳,获得30
21秒前
wanci应助凤凤采纳,获得10
21秒前
小k完成签到,获得积分20
21秒前
脑洞疼应助郑文涛采纳,获得10
23秒前
24秒前
小k发布了新的文献求助10
25秒前
冯不可完成签到,获得积分10
26秒前
27秒前
27秒前
黑暗炸鸡发布了新的文献求助30
27秒前
哈卷完成签到 ,获得积分10
27秒前
科研通AI2S应助难摧采纳,获得10
29秒前
赘婿应助abaaba采纳,获得10
29秒前
乐正念云完成签到,获得积分10
30秒前
泡泡完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023