Flood forecasting based on radar precipitation nowcasting using U-net and its improved models

临近预报 降水 雷达 洪水预报 气象学 环境科学 大洪水 定量降水预报 气候学 气象雷达 水文学(农业) 地质学 计算机科学 地理 电信 岩土工程 考古
作者
Jianzhu Li,Leijing Li,Ting Zhang,Haoyu Xing,Yi Shi,Zhixia Li,Congmei Wang,Jin Liu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:632: 130871-130871 被引量:15
标识
DOI:10.1016/j.jhydrol.2024.130871
摘要

Accurate and timely short-term precipitation nowcasting is important for achieving reliable flood forecasting. The data-driven approaches have performed well in radar echo extrapolation to nowcast precipitation. In this paper, U-Net and its improved models, including SmaAt-Unet, Nested-Unet, and U-Net 3Plus were applied to perform radar echo extrapolation and precipitation nowcasting for 0.5 h, 1 h, and 2 h lead times of typical rainfall processes. The nowcasted precipitation was used as input to the HEC-HMS hydrological model for flood forecasting to compare the effect of different structural improvements to U-Net on the accuracy of flood forecasting. The results demonstrated that Nested-Unet and U-Net 3Plus aided in enhancing the accuracy of the extrapolation of moderate intensity radar echoes. With fewer discrepancies and better correlation with measured rainfall, the U-Net and U-Net 3Plus precipitation nowcasting results also produced improved flood forecasting outcome. The precipitation nowcasting and flood forecasting for SmaAt-Unet were slightly worse than other models; the relative errors of both flood peak and depth for Nested-Unet at 0.5 h lead time were less than 20 %, showing a good performance. Moreover, in a separate control experiment, the accuracy of the echo extrapolation was significantly decreased when convolutional block attention module (CBAM) was added to each model. However, all models have better extrapolation accuracy than the basic ConvLSTM. In general, Nested-Unet and U-Net 3Plus were helpful to improve the accuracy of precipitation nowcasting and flood forecasting, and the forecasted flood with 0.5 h and 1 h lead times could match the actual flood processes, but the peak discharge from nowcasting with 2 h lead time were severely underestimated, while the peak occurrence time could be forecasted correctly. These conclusions and attempts can provide effective guidelines for regional precipitation nowcasting and flood forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
大模型应助Bob采纳,获得10
5秒前
赵人英发布了新的文献求助10
5秒前
chenqiumu应助Bressanone采纳,获得30
5秒前
6秒前
sanyecai完成签到,获得积分10
7秒前
迷你的冬萱完成签到 ,获得积分10
7秒前
斯文败类应助舒心的天采纳,获得10
8秒前
虚拟的怡完成签到,获得积分10
8秒前
彭于晏应助聿1988采纳,获得10
8秒前
Yaksu发布了新的文献求助10
9秒前
10秒前
12秒前
风生完成签到,获得积分10
12秒前
13秒前
13秒前
xxxzzz完成签到 ,获得积分20
13秒前
14秒前
迦鳞完成签到 ,获得积分10
14秒前
nenoaowu发布了新的文献求助10
14秒前
15秒前
Sakura发布了新的文献求助200
15秒前
17秒前
hodi完成签到 ,获得积分10
17秒前
comma发布了新的文献求助10
17秒前
mzs完成签到,获得积分20
17秒前
XinyanYan发布了新的文献求助10
18秒前
louis dai发布了新的文献求助10
18秒前
小困完成签到,获得积分20
19秒前
19秒前
19秒前
三月完成签到,获得积分10
20秒前
20秒前
丘比特应助nenoaowu采纳,获得10
21秒前
mzs发布了新的文献求助10
22秒前
悲伤西米露完成签到,获得积分10
23秒前
23秒前
MAOMAO完成签到,获得积分10
25秒前
ChenYX发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298441
求助须知:如何正确求助?哪些是违规求助? 4446944
关于积分的说明 13841126
捐赠科研通 4332352
什么是DOI,文献DOI怎么找? 2378131
邀请新用户注册赠送积分活动 1373367
关于科研通互助平台的介绍 1338964