Flood forecasting based on radar precipitation nowcasting using U-net and its improved models

临近预报 降水 雷达 洪水预报 气象学 环境科学 大洪水 定量降水预报 气候学 气象雷达 水文学(农业) 地质学 计算机科学 地理 电信 岩土工程 考古
作者
Jianzhu Li,Leijing Li,Ting Zhang,Haoyu Xing,Yi Shi,Zhixia Li,Congmei Wang,Jin Liu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:632: 130871-130871 被引量:15
标识
DOI:10.1016/j.jhydrol.2024.130871
摘要

Accurate and timely short-term precipitation nowcasting is important for achieving reliable flood forecasting. The data-driven approaches have performed well in radar echo extrapolation to nowcast precipitation. In this paper, U-Net and its improved models, including SmaAt-Unet, Nested-Unet, and U-Net 3Plus were applied to perform radar echo extrapolation and precipitation nowcasting for 0.5 h, 1 h, and 2 h lead times of typical rainfall processes. The nowcasted precipitation was used as input to the HEC-HMS hydrological model for flood forecasting to compare the effect of different structural improvements to U-Net on the accuracy of flood forecasting. The results demonstrated that Nested-Unet and U-Net 3Plus aided in enhancing the accuracy of the extrapolation of moderate intensity radar echoes. With fewer discrepancies and better correlation with measured rainfall, the U-Net and U-Net 3Plus precipitation nowcasting results also produced improved flood forecasting outcome. The precipitation nowcasting and flood forecasting for SmaAt-Unet were slightly worse than other models; the relative errors of both flood peak and depth for Nested-Unet at 0.5 h lead time were less than 20 %, showing a good performance. Moreover, in a separate control experiment, the accuracy of the echo extrapolation was significantly decreased when convolutional block attention module (CBAM) was added to each model. However, all models have better extrapolation accuracy than the basic ConvLSTM. In general, Nested-Unet and U-Net 3Plus were helpful to improve the accuracy of precipitation nowcasting and flood forecasting, and the forecasted flood with 0.5 h and 1 h lead times could match the actual flood processes, but the peak discharge from nowcasting with 2 h lead time were severely underestimated, while the peak occurrence time could be forecasted correctly. These conclusions and attempts can provide effective guidelines for regional precipitation nowcasting and flood forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三番又六次完成签到,获得积分10
1秒前
杨大葱完成签到,获得积分10
1秒前
科目三应助Kate采纳,获得10
1秒前
Jasper应助丰富青文采纳,获得10
1秒前
小情绪完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助FG采纳,获得10
2秒前
2秒前
2秒前
小杭76应助12采纳,获得10
3秒前
4秒前
5秒前
yxt完成签到,获得积分10
5秒前
6秒前
6秒前
恋晨完成签到 ,获得积分10
6秒前
苏世誉发布了新的文献求助10
6秒前
刘永红发布了新的文献求助10
6秒前
橙西西完成签到,获得积分10
7秒前
Hello应助我最爱读文献了采纳,获得10
8秒前
yxt发布了新的文献求助10
8秒前
浮游应助何以载道采纳,获得10
9秒前
FG完成签到,获得积分10
9秒前
KYY完成签到 ,获得积分10
10秒前
11秒前
肉苁蓉完成签到 ,获得积分20
11秒前
fu发布了新的文献求助30
11秒前
FG发布了新的文献求助10
12秒前
12秒前
飞舞的青鱼完成签到,获得积分10
12秒前
12秒前
13秒前
科研通AI5应助杨丽采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
彭于晏应助蓝眼睛采纳,获得10
14秒前
15秒前
文静的夜阑完成签到,获得积分20
15秒前
炼丹师应助啊哦采纳,获得20
16秒前
森水垚发布了新的文献求助10
16秒前
jihe发布了新的文献求助10
17秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590