Flood forecasting based on radar precipitation nowcasting using U-net and its improved models

临近预报 降水 雷达 洪水预报 气象学 环境科学 大洪水 定量降水预报 气候学 气象雷达 水文学(农业) 地质学 计算机科学 地理 电信 岩土工程 考古
作者
Jianzhu Li,Leijing Li,Ting Zhang,Haoyu Xing,Yi Shi,Zhixia Li,Congmei Wang,Jin Liu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:632: 130871-130871 被引量:15
标识
DOI:10.1016/j.jhydrol.2024.130871
摘要

Accurate and timely short-term precipitation nowcasting is important for achieving reliable flood forecasting. The data-driven approaches have performed well in radar echo extrapolation to nowcast precipitation. In this paper, U-Net and its improved models, including SmaAt-Unet, Nested-Unet, and U-Net 3Plus were applied to perform radar echo extrapolation and precipitation nowcasting for 0.5 h, 1 h, and 2 h lead times of typical rainfall processes. The nowcasted precipitation was used as input to the HEC-HMS hydrological model for flood forecasting to compare the effect of different structural improvements to U-Net on the accuracy of flood forecasting. The results demonstrated that Nested-Unet and U-Net 3Plus aided in enhancing the accuracy of the extrapolation of moderate intensity radar echoes. With fewer discrepancies and better correlation with measured rainfall, the U-Net and U-Net 3Plus precipitation nowcasting results also produced improved flood forecasting outcome. The precipitation nowcasting and flood forecasting for SmaAt-Unet were slightly worse than other models; the relative errors of both flood peak and depth for Nested-Unet at 0.5 h lead time were less than 20 %, showing a good performance. Moreover, in a separate control experiment, the accuracy of the echo extrapolation was significantly decreased when convolutional block attention module (CBAM) was added to each model. However, all models have better extrapolation accuracy than the basic ConvLSTM. In general, Nested-Unet and U-Net 3Plus were helpful to improve the accuracy of precipitation nowcasting and flood forecasting, and the forecasted flood with 0.5 h and 1 h lead times could match the actual flood processes, but the peak discharge from nowcasting with 2 h lead time were severely underestimated, while the peak occurrence time could be forecasted correctly. These conclusions and attempts can provide effective guidelines for regional precipitation nowcasting and flood forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李娜完成签到,获得积分10
刚刚
tqqwerty完成签到,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
丹丹丹应助科研通管家采纳,获得10
2秒前
科研乞丐应助科研通管家采纳,获得20
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
丹丹丹应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
丹丹丹应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
宋慧茹完成签到,获得积分10
4秒前
8秒前
wanghao婷发布了新的文献求助10
9秒前
Lucas应助无烛的夜晚采纳,获得10
10秒前
安好发布了新的文献求助10
11秒前
11秒前
怀忑完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI6应助鲤鱼翰采纳,获得10
14秒前
小蘑菇应助wanghao婷采纳,获得10
15秒前
静翕完成签到 ,获得积分10
15秒前
mzh发布了新的文献求助10
16秒前
科研通AI6应助梨花谷的猫采纳,获得10
17秒前
cizy不爱科研了完成签到,获得积分10
17秒前
ldy发布了新的文献求助10
17秒前
英俊的铭应助慢慢采纳,获得10
18秒前
18秒前
过眼云烟发布了新的文献求助10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416997
求助须知:如何正确求助?哪些是违规求助? 4533109
关于积分的说明 14138172
捐赠科研通 4449179
什么是DOI,文献DOI怎么找? 2440630
邀请新用户注册赠送积分活动 1432456
关于科研通互助平台的介绍 1409858