Flood forecasting based on radar precipitation nowcasting using U-net and its improved models

临近预报 降水 雷达 洪水预报 气象学 环境科学 大洪水 定量降水预报 气候学 气象雷达 水文学(农业) 地质学 计算机科学 地理 考古 岩土工程 电信
作者
Jianzhu Li,Leijing Li,Ting Zhang,Haoyu Xing,Yi Shi,Zhixia Li,Congmei Wang,Jin Liu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:632: 130871-130871 被引量:2
标识
DOI:10.1016/j.jhydrol.2024.130871
摘要

Accurate and timely short-term precipitation nowcasting is important for achieving reliable flood forecasting. The data-driven approaches have performed well in radar echo extrapolation to nowcast precipitation. In this paper, U-Net and its improved models, including SmaAt-Unet, Nested-Unet, and U-Net 3Plus were applied to perform radar echo extrapolation and precipitation nowcasting for 0.5 h, 1 h, and 2 h lead times of typical rainfall processes. The nowcasted precipitation was used as input to the HEC-HMS hydrological model for flood forecasting to compare the effect of different structural improvements to U-Net on the accuracy of flood forecasting. The results demonstrated that Nested-Unet and U-Net 3Plus aided in enhancing the accuracy of the extrapolation of moderate intensity radar echoes. With fewer discrepancies and better correlation with measured rainfall, the U-Net and U-Net 3Plus precipitation nowcasting results also produced improved flood forecasting outcome. The precipitation nowcasting and flood forecasting for SmaAt-Unet were slightly worse than other models; the relative errors of both flood peak and depth for Nested-Unet at 0.5 h lead time were less than 20 %, showing a good performance. Moreover, in a separate control experiment, the accuracy of the echo extrapolation was significantly decreased when convolutional block attention module (CBAM) was added to each model. However, all models have better extrapolation accuracy than the basic ConvLSTM. In general, Nested-Unet and U-Net 3Plus were helpful to improve the accuracy of precipitation nowcasting and flood forecasting, and the forecasted flood with 0.5 h and 1 h lead times could match the actual flood processes, but the peak discharge from nowcasting with 2 h lead time were severely underestimated, while the peak occurrence time could be forecasted correctly. These conclusions and attempts can provide effective guidelines for regional precipitation nowcasting and flood forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DTT完成签到,获得积分10
2秒前
NexusExplorer应助奋斗的桐采纳,获得10
2秒前
2秒前
2秒前
快乐小恬完成签到 ,获得积分10
2秒前
2秒前
3秒前
SciGPT应助光亮的思柔采纳,获得10
4秒前
norman完成签到,获得积分20
4秒前
4秒前
万能图书馆应助包容浩宇采纳,获得10
4秒前
小台发布了新的文献求助10
5秒前
隐形曼青应助nininininini采纳,获得10
5秒前
完美世界应助有魅力灵珊采纳,获得10
6秒前
6秒前
yc096vps发布了新的文献求助10
7秒前
7秒前
7秒前
彭于晏应助norman采纳,获得10
7秒前
小巧采白完成签到,获得积分10
7秒前
8秒前
Ava应助潞垚采纳,获得10
8秒前
yumemakase完成签到,获得积分10
8秒前
13123发布了新的文献求助10
8秒前
科目三应助哈哈哈采纳,获得10
8秒前
8秒前
小王发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Lufthansa发布了新的文献求助10
10秒前
凶狠的文龙完成签到,获得积分10
10秒前
shy完成签到,获得积分10
10秒前
10秒前
SongwCcccc完成签到,获得积分10
11秒前
三徙教完成签到,获得积分10
11秒前
Akim应助aprise采纳,获得10
11秒前
Hello应助deanna采纳,获得10
11秒前
FashionBoy应助小台采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657844
求助须知:如何正确求助?哪些是违规求助? 3219862
关于积分的说明 9733864
捐赠科研通 2928835
什么是DOI,文献DOI怎么找? 1603686
邀请新用户注册赠送积分活动 756719
科研通“疑难数据库(出版商)”最低求助积分说明 734079