计算机科学
特征(语言学)
分割
人工智能
水准点(测量)
模式识别(心理学)
块(置换群论)
数据挖掘
数学
几何学
大地测量学
语言学
哲学
地理
作者
Rasha Alshawi,Tamjidul Hoque,Meftahul Ferdaus,Mahdi Abdelguerfi,Kendall N. Niles,Ken Prathak,Joe G. Tom,Jordan D. Klein,Mohamed H. Mousa,Jesús López
出处
期刊:Cornell University - arXiv
日期:2023-12-21
标识
DOI:10.48550/arxiv.2312.14053
摘要
The proposed architecture, Dual Attentive U-Net with Feature Infusion (DAU-FI Net), addresses challenges in semantic segmentation, particularly on multiclass imbalanced datasets with limited samples. DAU-FI Net integrates multiscale spatial-channel attention mechanisms and feature injection to enhance precision in object localization. The core employs a multiscale depth-separable convolution block, capturing localized patterns across scales. This block is complemented by a spatial-channel squeeze and excitation (scSE) attention unit, modeling inter-dependencies between channels and spatial regions in feature maps. Additionally, additive attention gates refine segmentation by connecting encoder-decoder pathways. To augment the model, engineered features using Gabor filters for textural analysis, Sobel and Canny filters for edge detection are injected guided by semantic masks to expand the feature space strategically. Comprehensive experiments on a challenging sewer pipe and culvert defect dataset and a benchmark dataset validate DAU-FI Net's capabilities. Ablation studies highlight incremental benefits from attention blocks and feature injection. DAU-FI Net achieves state-of-the-art mean Intersection over Union (IoU) of 95.6% and 98.8% on the defect test set and benchmark respectively, surpassing prior methods by 8.9% and 12.6%, respectively. Ablation studies highlight incremental benefits from attention blocks and feature injection. The proposed architecture provides a robust solution, advancing semantic segmentation for multiclass problems with limited training data. Our sewer-culvert defects dataset, featuring pixel-level annotations, opens avenues for further research in this crucial domain. Overall, this work delivers key innovations in architecture, attention, and feature engineering to elevate semantic segmentation efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI