Dual Attention U-Net with Feature Infusion: Pushing the Boundaries of Multiclass Defect Segmentation

计算机科学 特征(语言学) 分割 人工智能 水准点(测量) 模式识别(心理学) 块(置换群论) 数据挖掘 数学 哲学 语言学 几何学 大地测量学 地理
作者
Rasha Alshawi,Tamjidul Hoque,Meftahul Ferdaus,Mahdi Abdelguerfi,Kendall N. Niles,Ken Prathak,Joe G. Tom,Jordan D. Klein,Mohamed H. Mousa,Jesús López
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.14053
摘要

The proposed architecture, Dual Attentive U-Net with Feature Infusion (DAU-FI Net), addresses challenges in semantic segmentation, particularly on multiclass imbalanced datasets with limited samples. DAU-FI Net integrates multiscale spatial-channel attention mechanisms and feature injection to enhance precision in object localization. The core employs a multiscale depth-separable convolution block, capturing localized patterns across scales. This block is complemented by a spatial-channel squeeze and excitation (scSE) attention unit, modeling inter-dependencies between channels and spatial regions in feature maps. Additionally, additive attention gates refine segmentation by connecting encoder-decoder pathways. To augment the model, engineered features using Gabor filters for textural analysis, Sobel and Canny filters for edge detection are injected guided by semantic masks to expand the feature space strategically. Comprehensive experiments on a challenging sewer pipe and culvert defect dataset and a benchmark dataset validate DAU-FI Net's capabilities. Ablation studies highlight incremental benefits from attention blocks and feature injection. DAU-FI Net achieves state-of-the-art mean Intersection over Union (IoU) of 95.6% and 98.8% on the defect test set and benchmark respectively, surpassing prior methods by 8.9% and 12.6%, respectively. Ablation studies highlight incremental benefits from attention blocks and feature injection. The proposed architecture provides a robust solution, advancing semantic segmentation for multiclass problems with limited training data. Our sewer-culvert defects dataset, featuring pixel-level annotations, opens avenues for further research in this crucial domain. Overall, this work delivers key innovations in architecture, attention, and feature engineering to elevate semantic segmentation efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助rain采纳,获得30
1秒前
123完成签到,获得积分10
1秒前
xx完成签到,获得积分10
1秒前
ZD完成签到 ,获得积分10
2秒前
科研通AI5应助Rui采纳,获得10
2秒前
yyj发布了新的文献求助10
2秒前
斯文静曼发布了新的文献求助10
2秒前
k7应助快乐滑板采纳,获得10
4秒前
假行僧发布了新的文献求助10
4秒前
4秒前
Wyoou完成签到,获得积分10
5秒前
5秒前
5秒前
故意的傲玉应助lll采纳,获得10
5秒前
6秒前
请叫我风吹麦浪应助lm采纳,获得10
6秒前
6秒前
6秒前
7秒前
科研通AI5应助水獭采纳,获得10
8秒前
8秒前
8秒前
研友_nv2r4n发布了新的文献求助10
9秒前
喵叽发布了新的文献求助10
9秒前
槐夏完成签到,获得积分10
9秒前
10秒前
科研通AI5应助su采纳,获得10
10秒前
10秒前
科目三应助MJQ采纳,获得30
10秒前
10秒前
慕子发布了新的文献求助20
11秒前
lumangxiaozi完成签到,获得积分10
11秒前
积极的凌波完成签到,获得积分10
11秒前
xiaxiao应助小小酥采纳,获得100
11秒前
523完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
13秒前
Hupoo发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762