Development and validation of a diagnostic model for ischemic cardiomyopathy with Artificial Neural Network by bioinformatic analysis

随机森林 Lasso(编程语言) 小桶 计算生物学 基因 人工神经网络 基因本体论 计算机科学 机器学习 钥匙(锁) 人工智能 回归 回归分析 生物信息学 生物 基因表达 遗传学 统计 数学 万维网 计算机安全
作者
Tuersunjiang Naman,Salamaiti Aimaier,Refukaiti Abuduhalike,Aihaidan Abudouwayiti,Juan Sun,Ailiman Mahemuti
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3787156/v1
摘要

Abstract Background Ischemic cardiomyopathy(ICM) is a significant global health concern caused by high morbidity and mortality.In addition, no previous study has reported the diagnostic biomarkers in ICM. Objective The presentstudy is aimed at establishing and validating a diagnostic model for ICM with Artificial Neural Network (ANN) by screening key potential biomarkers using bioinformatic analysis. Method Through searching the Gene Expression Omnibus(GEO) database, three gene expression datasets were downloaded and merged. Differentially expressed genes(DEGs) in the mergeddatasetswere detectedusing R software and subject to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. Then, Lasso regression analysis and random forest (RF) wereapplied to identify critical genes based on DEGs. Afterwards, we intersected the key genes screened from Lasso regression analysis and RF. An ICM diagnostic model was constructed by ANN. Based on a validation dataset, the diagnostic model was assessed, whereasits diagnostic performance was assessed usingarea under curve(AUC) values. Results Totally 18 ICM-related DEGs were detected. Then, six hub genes(COL1A1, FCN3, GLUL, MYOT, SERPINA3, and SLC38A2) were identified by intersecting the key genes filtered out by Lasso regression analysis and Random forest(RF). In the end, a diagnostic model for ICM was successfully designed by ANN, obtaining an AUC of 0.907 and 0.745 in training datasets, separately. Conclusion this study detected several potential genetic biomarkers and successfully developed an early predictive model with high diagnostic performance for ICM. In addition, the obtained findings offer a significant guidance for the early diagnosis as well as screening of ICM in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
icanccwhite发布了新的文献求助10
刚刚
yangph完成签到,获得积分10
刚刚
在水一方应助114555采纳,获得10
4秒前
4秒前
4秒前
fzh完成签到,获得积分10
4秒前
soiiixi发布了新的文献求助10
5秒前
应绝施发布了新的文献求助10
5秒前
5秒前
6秒前
icanccwhite完成签到,获得积分10
6秒前
shanshan发布了新的文献求助10
8秒前
qibo完成签到,获得积分10
8秒前
lily发布了新的文献求助10
9秒前
10秒前
脑洞疼应助无语的绿真采纳,获得10
10秒前
张建凯发布了新的文献求助10
10秒前
小燕子完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
科目三应助温柔初珍采纳,获得10
13秒前
13秒前
研友_VZG7GZ应助仁爱小凝采纳,获得10
14秒前
CodeCraft应助zhiren采纳,获得10
14秒前
小超完成签到,获得积分10
15秒前
15秒前
lynn_zhang发布了新的文献求助10
16秒前
16秒前
114555发布了新的文献求助10
17秒前
小燕子发布了新的文献求助10
17秒前
66发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
搜集达人应助zbl1314zbl采纳,获得10
18秒前
康康完成签到 ,获得积分10
18秒前
syk完成签到,获得积分10
19秒前
19秒前
20秒前
忧伤的向日葵应助大只00采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596