Development and validation of a diagnostic model for ischemic cardiomyopathy with Artificial Neural Network by bioinformatic analysis

随机森林 Lasso(编程语言) 小桶 计算生物学 基因 人工神经网络 基因本体论 计算机科学 机器学习 钥匙(锁) 人工智能 回归 回归分析 生物信息学 生物 基因表达 遗传学 统计 数学 万维网 计算机安全
作者
Tuersunjiang Naman,Salamaiti Aimaier,Refukaiti Abuduhalike,Aihaidan Abudouwayiti,Juan Sun,Ailiman Mahemuti
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3787156/v1
摘要

Abstract Background Ischemic cardiomyopathy(ICM) is a significant global health concern caused by high morbidity and mortality.In addition, no previous study has reported the diagnostic biomarkers in ICM. Objective The presentstudy is aimed at establishing and validating a diagnostic model for ICM with Artificial Neural Network (ANN) by screening key potential biomarkers using bioinformatic analysis. Method Through searching the Gene Expression Omnibus(GEO) database, three gene expression datasets were downloaded and merged. Differentially expressed genes(DEGs) in the mergeddatasetswere detectedusing R software and subject to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. Then, Lasso regression analysis and random forest (RF) wereapplied to identify critical genes based on DEGs. Afterwards, we intersected the key genes screened from Lasso regression analysis and RF. An ICM diagnostic model was constructed by ANN. Based on a validation dataset, the diagnostic model was assessed, whereasits diagnostic performance was assessed usingarea under curve(AUC) values. Results Totally 18 ICM-related DEGs were detected. Then, six hub genes(COL1A1, FCN3, GLUL, MYOT, SERPINA3, and SLC38A2) were identified by intersecting the key genes filtered out by Lasso regression analysis and Random forest(RF). In the end, a diagnostic model for ICM was successfully designed by ANN, obtaining an AUC of 0.907 and 0.745 in training datasets, separately. Conclusion this study detected several potential genetic biomarkers and successfully developed an early predictive model with high diagnostic performance for ICM. In addition, the obtained findings offer a significant guidance for the early diagnosis as well as screening of ICM in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十八鱼完成签到,获得积分10
刚刚
哒哒完成签到,获得积分10
3秒前
冷漠的布丁完成签到,获得积分10
3秒前
6秒前
高高兴兴完成签到,获得积分10
8秒前
8秒前
迷路凌柏完成签到 ,获得积分10
8秒前
9秒前
852应助胡萝卜采纳,获得10
9秒前
lucky完成签到 ,获得积分10
10秒前
十药九茯苓完成签到,获得积分10
10秒前
冷傲秋发布了新的文献求助10
10秒前
Tonsil01完成签到,获得积分10
10秒前
11秒前
11秒前
英姑应助小巧的松思采纳,获得10
12秒前
不知完成签到 ,获得积分10
12秒前
胡萝卜完成签到 ,获得积分10
13秒前
自業自得完成签到 ,获得积分10
13秒前
小二郎应助鸢尾采纳,获得10
13秒前
14秒前
YEEze发布了新的文献求助10
14秒前
花火易逝发布了新的文献求助10
15秒前
NexusExplorer应助豆包采纳,获得10
15秒前
肚肚发布了新的文献求助10
18秒前
术师完成签到,获得积分10
20秒前
21秒前
tomato完成签到 ,获得积分10
21秒前
21秒前
FK7发布了新的文献求助10
22秒前
弥漫的橘发布了新的文献求助10
22秒前
明研完成签到,获得积分10
22秒前
kevinrnk完成签到,获得积分10
23秒前
思源应助XQQDD采纳,获得10
23秒前
abc完成签到 ,获得积分10
23秒前
25秒前
view发布了新的文献求助10
25秒前
花火易逝完成签到,获得积分10
25秒前
周丫丫完成签到,获得积分10
25秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213267
求助须知:如何正确求助?哪些是违规求助? 4389144
关于积分的说明 13666133
捐赠科研通 4250090
什么是DOI,文献DOI怎么找? 2331905
邀请新用户注册赠送积分活动 1329586
关于科研通互助平台的介绍 1283167