亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a diagnostic model for ischemic cardiomyopathy with Artificial Neural Network by bioinformatic analysis

随机森林 Lasso(编程语言) 小桶 计算生物学 基因 人工神经网络 基因本体论 计算机科学 机器学习 钥匙(锁) 人工智能 回归 回归分析 生物信息学 生物 基因表达 遗传学 统计 数学 计算机安全 万维网
作者
Tuersunjiang Naman,Salamaiti Aimaier,Refukaiti Abuduhalike,Aihaidan Abudouwayiti,Juan Sun,Ailiman Mahemuti
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3787156/v1
摘要

Abstract Background Ischemic cardiomyopathy(ICM) is a significant global health concern caused by high morbidity and mortality.In addition, no previous study has reported the diagnostic biomarkers in ICM. Objective The presentstudy is aimed at establishing and validating a diagnostic model for ICM with Artificial Neural Network (ANN) by screening key potential biomarkers using bioinformatic analysis. Method Through searching the Gene Expression Omnibus(GEO) database, three gene expression datasets were downloaded and merged. Differentially expressed genes(DEGs) in the mergeddatasetswere detectedusing R software and subject to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. Then, Lasso regression analysis and random forest (RF) wereapplied to identify critical genes based on DEGs. Afterwards, we intersected the key genes screened from Lasso regression analysis and RF. An ICM diagnostic model was constructed by ANN. Based on a validation dataset, the diagnostic model was assessed, whereasits diagnostic performance was assessed usingarea under curve(AUC) values. Results Totally 18 ICM-related DEGs were detected. Then, six hub genes(COL1A1, FCN3, GLUL, MYOT, SERPINA3, and SLC38A2) were identified by intersecting the key genes filtered out by Lasso regression analysis and Random forest(RF). In the end, a diagnostic model for ICM was successfully designed by ANN, obtaining an AUC of 0.907 and 0.745 in training datasets, separately. Conclusion this study detected several potential genetic biomarkers and successfully developed an early predictive model with high diagnostic performance for ICM. In addition, the obtained findings offer a significant guidance for the early diagnosis as well as screening of ICM in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
Mia发布了新的文献求助10
17秒前
Ann1203完成签到,获得积分10
42秒前
46秒前
李爱国应助Ann1203采纳,获得10
49秒前
早坂爱发布了新的文献求助10
51秒前
1分钟前
刘天宇完成签到 ,获得积分10
1分钟前
HEIKU应助早坂爱采纳,获得10
1分钟前
hhl完成签到,获得积分10
1分钟前
李静发布了新的文献求助10
1分钟前
breeze完成签到,获得积分10
1分钟前
Akim应助thousandlong采纳,获得10
1分钟前
1分钟前
thousandlong发布了新的文献求助10
2分钟前
2分钟前
小铁板发布了新的文献求助10
2分钟前
2分钟前
布通发布了新的文献求助10
2分钟前
小铁板完成签到,获得积分10
2分钟前
zzxp完成签到,获得积分10
2分钟前
脑洞疼应助aaa采纳,获得10
2分钟前
烟花应助布通采纳,获得10
2分钟前
2分钟前
TAO LEE完成签到 ,获得积分10
3分钟前
aaa发布了新的文献求助10
3分钟前
独特的夜阑完成签到 ,获得积分10
3分钟前
等待的问夏完成签到 ,获得积分10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
yxm完成签到 ,获得积分10
3分钟前
3分钟前
乐乐应助布通采纳,获得30
3分钟前
寻道图强应助欧皇采纳,获得30
3分钟前
4分钟前
4分钟前
斯文绿凝完成签到,获得积分10
4分钟前
斯文绿凝发布了新的文献求助10
4分钟前
Owen应助Magali采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068088
求助须知:如何正确求助?哪些是违规求助? 2722059
关于积分的说明 7475980
捐赠科研通 2369097
什么是DOI,文献DOI怎么找? 1256148
科研通“疑难数据库(出版商)”最低求助积分说明 609472
版权声明 596815