A Blockchain-Empowered Incentive Mechanism for Cross-Silo Federated Learning

块链 计算机科学 激励 机制(生物学) 计算机安全 机构设计 认识论 哲学 经济 微观经济学
作者
Ming Tang,Peng Fu,Vincent W. S. Wong
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 9240-9253 被引量:2
标识
DOI:10.1109/tmc.2024.3361089
摘要

In cross-silo federated learning (FL), organizations cooperatively train a global model with their local datasets. However, some organizations may act as free riders such that they only contribute a small amount of resources but can obtain a high-accuracy global model. Meanwhile, some organizations can be business competitors, and they do not trust each other or any third-party entity. In this work, our goal is to design a framework that motivates efficient cooperation among organizations without the coordination of a central entity. To this end, we propose a blockchain-empowered incentive mechanism framework for cross-silo FL. Under this incentive mechanism framework, we develop a distributed algorithm that enables organizations to achieve social efficiency, individual rationality, and budget balance without private information of the organizations. Our proposed algorithm has a proven convergence guarantee and empirically achieves a higher convergence rate than a benchmark method. Moreover, we propose a transaction minimization algorithm to reduce the number of transactions made among organizations in the blockchain. This algorithm is proven to achieve a performance no worse than twice the minimum value. The experimental results in a testbed show that our proposed framework enables organizations to achieve social efficiency within a relatively short iterative process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳以寒发布了新的文献求助10
刚刚
aaa关注了科研通微信公众号
1秒前
1秒前
搜集达人应助sc采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
天天快乐应助平常如花采纳,获得10
2秒前
没头脑姑娘完成签到,获得积分10
2秒前
着急的凌青完成签到 ,获得积分10
2秒前
self2008完成签到,获得积分10
2秒前
hugh完成签到,获得积分10
5秒前
shuiyu发布了新的文献求助10
5秒前
黎L完成签到,获得积分10
6秒前
6秒前
7秒前
刘五州发布了新的文献求助10
7秒前
幽默的绿草完成签到,获得积分10
7秒前
Akim应助战舞飞扬采纳,获得10
7秒前
体贴代容发布了新的文献求助10
8秒前
金金发布了新的文献求助10
8秒前
9秒前
脑洞疼应助甜甜戎采纳,获得10
9秒前
9秒前
10秒前
遇见完成签到,获得积分10
10秒前
10秒前
shuiyu完成签到,获得积分10
11秒前
12秒前
轻松问筠完成签到,获得积分10
12秒前
SciGPT应助孙子豪采纳,获得10
13秒前
程smile笑发布了新的文献求助10
13秒前
Mu发布了新的文献求助10
13秒前
陈琳完成签到,获得积分10
14秒前
掠影发布了新的文献求助10
14秒前
14秒前
bkagyin应助ttevi采纳,获得10
15秒前
YYYHKKZN完成签到 ,获得积分10
15秒前
严三笑发布了新的文献求助10
15秒前
多多完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109