A Blockchain-Empowered Incentive Mechanism for Cross-Silo Federated Learning

块链 计算机科学 激励 机制(生物学) 计算机安全 机构设计 哲学 认识论 经济 微观经济学
作者
Ming Tang,Peng Fu,Vincent W. S. Wong
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 9240-9253 被引量:2
标识
DOI:10.1109/tmc.2024.3361089
摘要

In cross-silo federated learning (FL), organizations cooperatively train a global model with their local datasets. However, some organizations may act as free riders such that they only contribute a small amount of resources but can obtain a high-accuracy global model. Meanwhile, some organizations can be business competitors, and they do not trust each other or any third-party entity. In this work, our goal is to design a framework that motivates efficient cooperation among organizations without the coordination of a central entity. To this end, we propose a blockchain-empowered incentive mechanism framework for cross-silo FL. Under this incentive mechanism framework, we develop a distributed algorithm that enables organizations to achieve social efficiency, individual rationality, and budget balance without private information of the organizations. Our proposed algorithm has a proven convergence guarantee and empirically achieves a higher convergence rate than a benchmark method. Moreover, we propose a transaction minimization algorithm to reduce the number of transactions made among organizations in the blockchain. This algorithm is proven to achieve a performance no worse than twice the minimum value. The experimental results in a testbed show that our proposed framework enables organizations to achieve social efficiency within a relatively short iterative process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhzz完成签到,获得积分10
刚刚
刚刚
xhemers完成签到,获得积分10
刚刚
111发布了新的文献求助10
刚刚
1秒前
爱静静应助怡然的莫茗采纳,获得10
2秒前
3秒前
科研通AI5应助清秀的以云采纳,获得30
3秒前
李健的粉丝团团长应助xx采纳,获得10
5秒前
大豪子发布了新的文献求助30
5秒前
李繁蕊发布了新的文献求助10
5秒前
9秒前
9秒前
9秒前
9秒前
橘柚完成签到 ,获得积分10
10秒前
zmmmm发布了新的文献求助10
10秒前
领导范儿应助温言采纳,获得10
10秒前
思源应助OvO采纳,获得10
12秒前
迷糊发布了新的文献求助30
13秒前
LY发布了新的文献求助10
14秒前
zzz完成签到,获得积分10
14秒前
KimJongUn完成签到,获得积分10
14秒前
16秒前
16秒前
zy完成签到,获得积分10
17秒前
开心果子发布了新的文献求助10
17秒前
云痴子完成签到,获得积分10
18秒前
SciGPT应助粥粥采纳,获得10
18秒前
18秒前
18秒前
19秒前
苏源完成签到,获得积分10
19秒前
wu关闭了wu文献求助
19秒前
19秒前
20秒前
20秒前
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808