A Blockchain-Empowered Incentive Mechanism for Cross-Silo Federated Learning

块链 计算机科学 激励 机制(生物学) 计算机安全 机构设计 认识论 哲学 经济 微观经济学
作者
Ming Tang,Peng Fu,Vincent W. S. Wong
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 9240-9253 被引量:2
标识
DOI:10.1109/tmc.2024.3361089
摘要

In cross-silo federated learning (FL), organizations cooperatively train a global model with their local datasets. However, some organizations may act as free riders such that they only contribute a small amount of resources but can obtain a high-accuracy global model. Meanwhile, some organizations can be business competitors, and they do not trust each other or any third-party entity. In this work, our goal is to design a framework that motivates efficient cooperation among organizations without the coordination of a central entity. To this end, we propose a blockchain-empowered incentive mechanism framework for cross-silo FL. Under this incentive mechanism framework, we develop a distributed algorithm that enables organizations to achieve social efficiency, individual rationality, and budget balance without private information of the organizations. Our proposed algorithm has a proven convergence guarantee and empirically achieves a higher convergence rate than a benchmark method. Moreover, we propose a transaction minimization algorithm to reduce the number of transactions made among organizations in the blockchain. This algorithm is proven to achieve a performance no worse than twice the minimum value. The experimental results in a testbed show that our proposed framework enables organizations to achieve social efficiency within a relatively short iterative process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助xxi采纳,获得10
2秒前
zz完成签到 ,获得积分10
3秒前
冯佳琦完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
6秒前
Miranda完成签到,获得积分10
7秒前
堇笙vv发布了新的文献求助20
8秒前
xiaoru发布了新的文献求助10
9秒前
9秒前
单纯幻莲发布了新的文献求助10
10秒前
南星发布了新的文献求助10
10秒前
11秒前
kris发布了新的文献求助10
11秒前
勤劳的康乃馨完成签到,获得积分20
12秒前
12秒前
唐南发布了新的文献求助30
12秒前
13秒前
酷酷海豚完成签到,获得积分10
14秒前
15秒前
qq发布了新的文献求助10
15秒前
shihun发布了新的文献求助10
17秒前
17秒前
机智涵阳完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
袁向薇发布了新的文献求助10
19秒前
浮游应助jiyixiao1采纳,获得10
20秒前
大模型应助wyz采纳,获得10
20秒前
科研通AI6应助xiaoru采纳,获得50
21秒前
22秒前
LHY发布了新的文献求助10
23秒前
酷炫翠柏发布了新的文献求助10
24秒前
袁向薇完成签到,获得积分10
24秒前
吴洲凤完成签到 ,获得积分10
25秒前
27秒前
28秒前
一二完成签到,获得积分10
28秒前
两张发布了新的文献求助10
29秒前
高山和鸟完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716