制氢
再分配(选举)
非阻塞I/O
异质结
电泳剂
析氧
催化作用
材料科学
化学工程
光电子学
光化学
无机化学
化学
工程类
电极
电化学
政治学
物理化学
有机化学
政治
法学
作者
Haoran Ding,Zhanhong Zhao,Zeng He,Xin Li,Kuixin Cui,Yi Zhang,Xinghua Chang
出处
期刊:ACS materials letters
[American Chemical Society]
日期:2024-02-20
卷期号:6 (3): 1029-1041
被引量:8
标识
DOI:10.1021/acsmaterialslett.3c01578
摘要
Substituting the oxygen evolution reaction by the urea oxidation reaction (UOR) is thermodynamically more favorable for energy-saving hydrogen production. However, UOR suffers from sluggish reaction kinetics due to its complex six-electron transfer processes combined with conversion of complicated intermediates. Herein, LaNiO3–NiO heterojunctions successfully constructed to accelerate UOR. Systematic experimental investigation and theoretical calculation endorse that self-driven local charge redistribution takes place at the Janus LaNiO3/NiO interface, generating local nucleophilic and electrophilic regions. Such a unique structure is favorable for targeted adsorption of amino groups and electrophilic carbonyl groups, thus promoting the rupture of C–N bonds in urea. In addition, the build-in electric field triggered by LaNiO3–NiO heterojunction could effectively diminish the stepwise energy barrier, accelerating desorption of *CO2. As a result, the LaNiO3–NiO exhibits superior UOR performance, delivering a current density of 10 mA cm–2 at 1.34 V (vs RHE). This work supplies valuable insights for fundamental understanding and rational construction of efficient heterojunction UOR catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI