Development and validation of a nomogram to predict the risk of sepsis-associated encephalopathy for septic patients in PICU: a multicenter retrospective cohort study

医学 列线图 败血症 回顾性队列研究 队列 置信区间 队列研究 部分凝血活酶时间 重症监护室 内科学 儿科 血小板
作者
Guan Wang,Xinzhu Jiang,Yanan Fu,Yan Gao,Qin Jiang,Enyu Guo,Haoyang Huang,Liu Xin-jie
出处
期刊:Journal of intensive care [Springer Nature]
卷期号:12 (1) 被引量:1
标识
DOI:10.1186/s40560-024-00721-7
摘要

Abstract Background Patients with sepsis-associated encephalopathy (SAE) have higher mortality rates and longer ICU stays. Predictors of SAE are yet to be identified. We aimed to establish an effective and simple-to-use nomogram for the individual prediction of SAE in patients with sepsis admitted to pediatric intensive care unit (PICU) in order to prevent early onset of SAE. Methods In this retrospective multicenter study, we screened 790 patients with sepsis admitted to the PICU of three hospitals in Shandong, China. Least absolute shrinkage and selection operator regression was used for variable selection and regularization in the training cohort. The selected variables were used to construct a nomogram to predict the risk of SAE in patients with sepsis in the PICU. The nomogram performance was assessed using discrimination and calibration. Results From January 2017 to May 2022, 613 patients with sepsis from three centers were eligible for inclusion in the final study. The training cohort consisted of 251 patients, and the two independent validation cohorts consisted of 193 and 169 patients. Overall, 237 (38.7%) patients developed SAE. The morbidity of SAE in patients with sepsis is associated with the respiratory rate, blood urea nitrogen, activated partial thromboplastin time, arterial partial pressure of carbon dioxide, and pediatric critical illness score. We generated a nomogram for the early identification of SAE in the training cohort (area under curve [AUC] 0.82, 95% confidence interval [CI] 0.76–0.88, sensitivity 65.6%, specificity 88.8%) and validation cohort (validation cohort 1: AUC 0.80, 95% CI 0.74–0.86, sensitivity 75.0%, specificity 74.3%; validation cohort 2: AUC 0.81, 95% CI 0.73–0.88, sensitivity 69.1%, specificity 83.3%). Calibration plots for the nomogram showed excellent agreement between SAE probabilities of the observed and predicted values. Decision curve analysis indicated that the nomogram conferred a high net clinical benefit. Conclusions The novel nomogram and online calculator showed performance in predicting the morbidity of SAE in patients with sepsis admitted to the PICU, thereby potentially assisting clinicians in the early detection and intervention of SAE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助暖吱采纳,获得20
3秒前
受伤的平安完成签到,获得积分10
4秒前
ZeKaWa应助linlin采纳,获得10
6秒前
14秒前
18秒前
tianya完成签到,获得积分10
19秒前
20秒前
烟花应助标致的妙晴采纳,获得10
21秒前
浮游应助朴素的松采纳,获得10
23秒前
23秒前
24秒前
加百莉发布了新的文献求助10
25秒前
cancan发布了新的文献求助10
26秒前
伯言发布了新的文献求助10
31秒前
元谷雪应助陈帅采纳,获得10
32秒前
初雪完成签到,获得积分10
33秒前
花花花花完成签到 ,获得积分10
38秒前
40秒前
41秒前
肉肉完成签到 ,获得积分10
41秒前
cancan完成签到,获得积分10
42秒前
zhuangbaobao发布了新的文献求助10
45秒前
郭6666发布了新的文献求助10
46秒前
完美世界应助留胡子的火采纳,获得10
51秒前
脑洞疼应助郭6666采纳,获得10
51秒前
公冶愚志完成签到,获得积分10
54秒前
威武的皮卡丘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大龙哥886应助ri_290采纳,获得10
1分钟前
sevenhill应助Devastating采纳,获得10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得30
1分钟前
拼搏应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555