Development and validation of a nomogram to predict the risk of sepsis-associated encephalopathy for septic patients in PICU: a multicenter retrospective cohort study

医学 列线图 败血症 回顾性队列研究 队列 置信区间 队列研究 部分凝血活酶时间 重症监护室 内科学 儿科 血小板
作者
Guan Wang,Xinzhu Jiang,Yanan Fu,Yan Gao,Qin Jiang,Enyu Guo,Haoyang Huang,Liu Xin-jie
出处
期刊:Journal of intensive care [BioMed Central]
卷期号:12 (1) 被引量:1
标识
DOI:10.1186/s40560-024-00721-7
摘要

Abstract Background Patients with sepsis-associated encephalopathy (SAE) have higher mortality rates and longer ICU stays. Predictors of SAE are yet to be identified. We aimed to establish an effective and simple-to-use nomogram for the individual prediction of SAE in patients with sepsis admitted to pediatric intensive care unit (PICU) in order to prevent early onset of SAE. Methods In this retrospective multicenter study, we screened 790 patients with sepsis admitted to the PICU of three hospitals in Shandong, China. Least absolute shrinkage and selection operator regression was used for variable selection and regularization in the training cohort. The selected variables were used to construct a nomogram to predict the risk of SAE in patients with sepsis in the PICU. The nomogram performance was assessed using discrimination and calibration. Results From January 2017 to May 2022, 613 patients with sepsis from three centers were eligible for inclusion in the final study. The training cohort consisted of 251 patients, and the two independent validation cohorts consisted of 193 and 169 patients. Overall, 237 (38.7%) patients developed SAE. The morbidity of SAE in patients with sepsis is associated with the respiratory rate, blood urea nitrogen, activated partial thromboplastin time, arterial partial pressure of carbon dioxide, and pediatric critical illness score. We generated a nomogram for the early identification of SAE in the training cohort (area under curve [AUC] 0.82, 95% confidence interval [CI] 0.76–0.88, sensitivity 65.6%, specificity 88.8%) and validation cohort (validation cohort 1: AUC 0.80, 95% CI 0.74–0.86, sensitivity 75.0%, specificity 74.3%; validation cohort 2: AUC 0.81, 95% CI 0.73–0.88, sensitivity 69.1%, specificity 83.3%). Calibration plots for the nomogram showed excellent agreement between SAE probabilities of the observed and predicted values. Decision curve analysis indicated that the nomogram conferred a high net clinical benefit. Conclusions The novel nomogram and online calculator showed performance in predicting the morbidity of SAE in patients with sepsis admitted to the PICU, thereby potentially assisting clinicians in the early detection and intervention of SAE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜀黍完成签到,获得积分10
刚刚
灵犀完成签到 ,获得积分10
刚刚
刚刚
lulu发布了新的文献求助10
1秒前
1秒前
Orange应助科研不懂12采纳,获得10
2秒前
帅气凝云发布了新的文献求助10
2秒前
光亮之桃发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
研友_nEW4G8发布了新的文献求助10
4秒前
5秒前
wsl_csu发布了新的文献求助30
6秒前
orixero应助帅气凝云采纳,获得10
7秒前
7秒前
xuxingjie发布了新的文献求助10
8秒前
dique3hao完成签到 ,获得积分10
11秒前
whocare发布了新的文献求助10
12秒前
jiaqiLi发布了新的文献求助10
12秒前
13秒前
在水一方应助lianhe采纳,获得10
14秒前
fh完成签到 ,获得积分10
15秒前
科研通AI5应助DH采纳,获得10
15秒前
16秒前
哈哈哈哈发布了新的文献求助10
16秒前
17秒前
lyt发布了新的文献求助10
19秒前
1947188918完成签到,获得积分10
19秒前
乐乐应助song采纳,获得10
20秒前
20秒前
岁岁平岁岁安完成签到,获得积分20
21秒前
遇上就这样吧给庸人何必自扰的求助进行了留言
21秒前
22秒前
量子星尘发布了新的文献求助200
22秒前
丰丰发布了新的文献求助10
22秒前
小吴发布了新的文献求助10
22秒前
LIU发布了新的文献求助10
22秒前
22秒前
研友_nEW4G8完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981