Splitting tensile strength of basalt fiber reinforced coral aggregate concrete: Optimized XGBoost models and experimental validation

骨料(复合) 极限抗拉强度 玄武岩纤维 玄武岩 材料科学 复合材料 珊瑚 碱-骨料反应 纤维 岩土工程 地质学 地球化学 海洋学
作者
Zhen Sun,Yalin Li,Yuxi Yang,Li Su,Shijie Xie
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:416: 135133-135133 被引量:35
标识
DOI:10.1016/j.conbuildmat.2024.135133
摘要

The split tensile strength of basalt fiber-reinforced coral aggregate concrete (BFRCAC-SS) is a critical parameter in structural design because it directly affects the load-bearing capacity and durability of BFRCAC structures. BFRCAC-SS is influenced by multiple variables, and the accuracy and generalization capability of traditional explicit models for predicting BFRCAC-SS with individual variables are limited. Therefore, this study involved collecting 313 data sets from 14 articles to establish a comprehensive BFRCAC-SS database. The hyperparameters (iteration count, tree depth, and learning rate) of the XGBoost algorithm were optimized using prairie dog optimization, hunger games search, and egret swarm optimization (ESOA) algorithms. Consequently, three optimized XGBoost models for BFRCAC-SS were developed. Furthermore, feature importance was analyzed using the Shapley additive explanation method. The performance of the optimized XGBoost model was subsequently validated through experimental testing. Results indicate that the ESOA–XGBoost model provides predictions that are closer to the actual values, with smaller mean errors and standard deviations. The performance indicators, including coefficient of determination, mean absolute error, mean absolute percentage error, mean square error, and root mean square error, of the ESOA–XGBoost model are 0.9633, 0.1002, 2.8862, 0.0188, and 0.1373, respectively, and are superior to those of the other tested models. Curing time and the water–binder ratio are identified as the two most critical factors. Prolonging curing time and reducing the water–binder ratio enhance the BFRCAC-SS. A graphical user interface for BFRCAC-SS is developed on the basis of the ESOA-XGBoost model, which enables the visualization of BFRCAC-SS predictions. Furthermore, the relative error between the experimental and predicted values consistently remains below 5%, which highlights the strong generalization and accuracy of the ESOA–XGBoost model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禤禤完成签到,获得积分10
1秒前
英姑应助迷l采纳,获得10
2秒前
Dr.coco发布了新的文献求助10
4秒前
彭于晏应助seven采纳,获得10
4秒前
SciGPT应助一滴水采纳,获得10
5秒前
css完成签到 ,获得积分10
6秒前
7秒前
7秒前
bji发布了新的文献求助10
9秒前
linn完成签到,获得积分20
9秒前
希望天下0贩的0应助墨卿采纳,获得10
10秒前
10秒前
10秒前
kk发布了新的文献求助10
11秒前
13秒前
13秒前
高兴的平露完成签到,获得积分20
14秒前
15秒前
linn发布了新的文献求助10
15秒前
MOF@COF发布了新的文献求助10
16秒前
Orange应助迷l采纳,获得10
17秒前
dd99081发布了新的文献求助10
17秒前
19秒前
谢梓豪完成签到 ,获得积分10
19秒前
扎心发布了新的文献求助10
21秒前
ljc完成签到,获得积分20
21秒前
22秒前
Orange应助张旭卓采纳,获得10
23秒前
24秒前
隐形曼青应助公卫小白采纳,获得10
25秒前
小马甲应助MOF@COF采纳,获得10
25秒前
27秒前
cccccl驳回了顾矜应助
27秒前
科研通AI2S应助MOF@COF采纳,获得10
28秒前
小何完成签到 ,获得积分10
31秒前
情怀应助孤独的帅着采纳,获得10
32秒前
优雅梨愁完成签到 ,获得积分10
32秒前
英姑应助迷l采纳,获得10
33秒前
33秒前
dd99081完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999444
求助须知:如何正确求助?哪些是违规求助? 3538780
关于积分的说明 11275184
捐赠科研通 3277604
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883977
科研通“疑难数据库(出版商)”最低求助积分说明 810111