Splitting tensile strength of basalt fiber reinforced coral aggregate concrete: Optimized XGBoost models and experimental validation

骨料(复合) 极限抗拉强度 玄武岩纤维 玄武岩 材料科学 复合材料 珊瑚 碱-骨料反应 纤维 岩土工程 地质学 地球化学 海洋学
作者
Zhen Sun,Yalin Li,Yuxi Yang,Li Su,Shijie Xie
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:416: 135133-135133 被引量:35
标识
DOI:10.1016/j.conbuildmat.2024.135133
摘要

The split tensile strength of basalt fiber-reinforced coral aggregate concrete (BFRCAC-SS) is a critical parameter in structural design because it directly affects the load-bearing capacity and durability of BFRCAC structures. BFRCAC-SS is influenced by multiple variables, and the accuracy and generalization capability of traditional explicit models for predicting BFRCAC-SS with individual variables are limited. Therefore, this study involved collecting 313 data sets from 14 articles to establish a comprehensive BFRCAC-SS database. The hyperparameters (iteration count, tree depth, and learning rate) of the XGBoost algorithm were optimized using prairie dog optimization, hunger games search, and egret swarm optimization (ESOA) algorithms. Consequently, three optimized XGBoost models for BFRCAC-SS were developed. Furthermore, feature importance was analyzed using the Shapley additive explanation method. The performance of the optimized XGBoost model was subsequently validated through experimental testing. Results indicate that the ESOA–XGBoost model provides predictions that are closer to the actual values, with smaller mean errors and standard deviations. The performance indicators, including coefficient of determination, mean absolute error, mean absolute percentage error, mean square error, and root mean square error, of the ESOA–XGBoost model are 0.9633, 0.1002, 2.8862, 0.0188, and 0.1373, respectively, and are superior to those of the other tested models. Curing time and the water–binder ratio are identified as the two most critical factors. Prolonging curing time and reducing the water–binder ratio enhance the BFRCAC-SS. A graphical user interface for BFRCAC-SS is developed on the basis of the ESOA-XGBoost model, which enables the visualization of BFRCAC-SS predictions. Furthermore, the relative error between the experimental and predicted values consistently remains below 5%, which highlights the strong generalization and accuracy of the ESOA–XGBoost model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Prime完成签到 ,获得积分10
刚刚
1秒前
exosome发布了新的文献求助10
2秒前
方方土发布了新的文献求助50
2秒前
lilili发布了新的文献求助10
3秒前
Danish完成签到 ,获得积分10
3秒前
开放的紫伊完成签到,获得积分10
5秒前
路鹿鹿完成签到,获得积分10
5秒前
平常发卡发布了新的文献求助10
6秒前
英俊的铭应助huangs采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
苏南完成签到 ,获得积分10
10秒前
Sylvia_J完成签到 ,获得积分10
10秒前
小周小周发布了新的文献求助10
10秒前
丘比特应助Sukey采纳,获得10
10秒前
10秒前
11秒前
周曦完成签到,获得积分10
11秒前
11秒前
大力初珍完成签到,获得积分10
11秒前
11秒前
Vincent发布了新的文献求助10
12秒前
12秒前
蜡笔小新完成签到,获得积分10
12秒前
12秒前
丝丝发布了新的文献求助10
13秒前
陈晚拧完成签到,获得积分10
13秒前
艾菲儿发布了新的文献求助10
13秒前
过冷风完成签到,获得积分10
13秒前
qwt完成签到,获得积分20
13秒前
14秒前
14秒前
巴达天使发布了新的文献求助10
14秒前
凝宁完成签到 ,获得积分10
14秒前
xY发布了新的文献求助10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151350
求助须知:如何正确求助?哪些是违规求助? 2802831
关于积分的说明 7850478
捐赠科研通 2460184
什么是DOI,文献DOI怎么找? 1309602
科研通“疑难数据库(出版商)”最低求助积分说明 628992
版权声明 601760