Network-level short-term traffic state prediction incorporating critical nodes: A knowledge-based deep fusion approach

期限(时间) 计算机科学 水准点(测量) 图形 块(置换群论) 深度学习 特征(语言学) 人工智能 传感器融合 卷积神经网络 数据挖掘 理论计算机科学 地理 地图学 数学 量子力学 几何学 物理 语言学 哲学
作者
Haipeng Cui,Shukai Chen,Hua Wang,Qiang Meng
出处
期刊:Information Sciences [Elsevier]
卷期号:662: 120215-120215
标识
DOI:10.1016/j.ins.2024.120215
摘要

The critical nodes (CNs) in urban transportation networks, defined as road entities (such as road segments or detectors in a road network) that present highly volatile traffic states, can significantly impact the overall traffic conditions. However, recent studies are unable to explicitly address CNs in traffic state prediction tasks. In this study, we develop a novel knowledge-based graph convolutional gated recurrent network incorporating critical nodes (KGCGRN-CN) to forecast the network-level short-term traffic states. The KGCGRN-CN model consists of three learning blocks: (i) a spectral graph convolution block that captures the network-level and CN-level spatial features in the data; (ii) a novel knowledge-based spatial feature fusion block that tailors the fusion of the network-level and the CN-level spatial features using geographical and traffic information of each road entity; and (iii) a temporal feature learning block, which captures the temporal patterns of the fused features. The KGCGRN-CN model is compared with several state-of-the-art benchmark models using a real-world freeway dataset. Results show that the developed model outperforms the benchmark models by a mean absolute error of 1.03 km/h on average. Further numerical experiments are conducted to demonstrate the effectiveness of the KGCGRN-CN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seive发布了新的文献求助10
刚刚
刚刚
刚刚
不太懂发布了新的文献求助10
1秒前
Powerfulg发布了新的文献求助10
1秒前
乙烯一个一克完成签到,获得积分10
1秒前
1秒前
在水一方应助小熊采纳,获得10
2秒前
mars关注了科研通微信公众号
3秒前
落后的怀柔完成签到,获得积分10
3秒前
4秒前
5秒前
科研通AI5应助李剑鸿采纳,获得30
5秒前
sjfczyh完成签到,获得积分10
5秒前
cc发布了新的文献求助30
5秒前
Let It Be发布了新的文献求助10
6秒前
寒冷的大白完成签到,获得积分10
7秒前
Lucas应助风趣冰淇淋采纳,获得10
7秒前
guard发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
8秒前
9秒前
9秒前
No发布了新的文献求助10
9秒前
害怕的果汁完成签到,获得积分10
10秒前
11秒前
斯文又槐完成签到,获得积分10
11秒前
跳跃若风发布了新的文献求助10
12秒前
Powerfulg完成签到,获得积分10
12秒前
Let It Be完成签到,获得积分10
12秒前
浩二完成签到,获得积分10
13秒前
14秒前
14秒前
天天快乐应助yao采纳,获得10
16秒前
大冬瓜发布了新的文献求助10
16秒前
浩二发布了新的文献求助10
16秒前
16秒前
17秒前
April完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734