Flexocatalytic Reduction of Tumor Interstitial Fluid/Solid Pressure for Efficient Nanodrug Penetration

渗透(战争) 材料科学 还原(数学) 流体压力 间质液 纳米技术 生物医学工程 医学 机械 病理 物理 几何学 数学 运筹学 工程类
作者
Anshuo Li,Tiantian Zhang,Xuwu Zhang,Zichuang Xu,H. F. Liu,Yuan Meng,Xindi Wei,Yuhui Zhu,Wenkang Tu,Xinquan Jiang,Yuchu He
出处
期刊:ACS Nano [American Chemical Society]
被引量:4
标识
DOI:10.1021/acsnano.3c09316
摘要

The practical efficacy of nanomedicines for treating solid tumors is frequently low, predominantly due to the elevated interstitial pressure within such tumors that obstructs the penetration of nanomedicines. This increased interstitial pressure originates from both liquid and solid stresses related to an undeveloped vascular network and excessive fibroblast proliferation. To specifically resolve the penetration issues of nanomedicines for tumor treatment, this study introduces a holistic "dual-faceted" approach. A treatment platform predicated on the WS2/Pt Schottky heterojunction was adopted, and flexocatalysis technology was used to disintegrate tumor interstitial fluids, thus producing oxygen and reactive oxygen species and effectively mitigating the interstitial fluid pressure. The chemotherapeutic agent curcumin was incorporated to further suppress the activity of cancer-associated fibroblasts, minimize collagen deposition in the extracellular matrix, and alleviate solid stress. Nanomedicines achieve homologous targeting by enveloping the tumor cell membrane. It was found that this multidimensional strategy not only alleviated the high-pressure milieu of the tumor interstitium─which enhanced the efficiency of nanomedicine delivery─but also triggered tumor cell apoptosis via the generated reactive oxygen species and modulated the tumor microenvironment. This, in turn, amplified immune responses, substantially optimizing the therapeutic impacts of nanomedicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助可乐采纳,获得10
1秒前
自来完成签到 ,获得积分10
1秒前
风中的宛白完成签到,获得积分20
1秒前
36456657应助fayd86采纳,获得10
1秒前
忐忑的醉蓝完成签到,获得积分20
1秒前
Akim应助可爱芷容采纳,获得10
2秒前
lemon完成签到,获得积分10
3秒前
芈冖完成签到,获得积分10
4秒前
内向的青荷完成签到,获得积分10
4秒前
理工完成签到,获得积分10
4秒前
风趣飞柏发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
violin发布了新的文献求助10
5秒前
5秒前
Lucas应助HJX采纳,获得10
5秒前
5秒前
背后摩托发布了新的文献求助10
5秒前
瘦瘦小萱完成签到,获得积分10
5秒前
熬夜朱古力完成签到,获得积分20
6秒前
小缸完成签到,获得积分10
6秒前
胡图图完成签到,获得积分10
6秒前
7秒前
Duckseid完成签到,获得积分10
7秒前
asdfqwer应助乐观的小松鼠采纳,获得10
7秒前
善学以致用应助haapy采纳,获得10
8秒前
StevenZhao发布了新的文献求助10
8秒前
8秒前
科研白小白应助violin采纳,获得30
8秒前
陈橙橙发布了新的文献求助10
8秒前
金牌小魚仔完成签到,获得积分10
8秒前
journey完成签到 ,获得积分10
8秒前
8秒前
Wang1991发布了新的文献求助50
9秒前
prosperp应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
HEIKU应助科研通管家采纳,获得10
9秒前
HEIKU应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477918
求助须知:如何正确求助?哪些是违规求助? 3069237
关于积分的说明 9112402
捐赠科研通 2760784
什么是DOI,文献DOI怎么找? 1515087
邀请新用户注册赠送积分活动 700570
科研通“疑难数据库(出版商)”最低求助积分说明 699712