A novel approach to deriving the fine-scale daily NO2 dataset during 2005–2020 in China: Improving spatial resolution and temporal coverage to advance exposure assessment

缩小尺度 外推法 环境科学 中国 人口 比例(比率) 自然地理学 地图学 地理 统计 环境卫生 气象学 医学 数学 降水 考古
作者
Rong Zhu,Wenhua Luo,Michael L. Grieneisen,Yang Qiu,Yu Zhan,Yang Qiu
出处
期刊:Environmental Research [Elsevier]
卷期号:249: 118381-118381 被引量:1
标识
DOI:10.1016/j.envres.2024.118381
摘要

Surface NO2 pollution can result in serious health consequences such as cardiovascular disease, asthma, and premature mortality. Due to the extensive spatial variation in surface NO2, the spatial resolution of a NO2 dataset has a significant impact on the exposure and health impact assessment. There is currently no long-term, high-resolution, and publicly available NO2 dataset for China. To fill this gap, this study generated a NO2 dataset named RBE-DS-NO2 for China during 2005–2020 at 1 km and daily resolution. We employed the robust back-extrapolation via a data augmentation approach (RBE-DA) to ensure the predictive accuracy in back-extrapolation before 2013, and utilized an improved spatial downscaling technique (DS) to refine the spatial resolution from 10 km to 1 km. Back-extrapolation validation based on 2005–2012 observations from sites in Taiwan province yielded an R2 of 0.72 and RMSE of 10.7 μg/m3, while cross-validation across China during 2013–2020 showed an R2 of 0.73 and RMSE of 9.6 μg/m3. RBE-DS-NO2 better captured spatiotemporal variation of surface NO2 in China compared to the existing publicly available datasets. Exposure assessment using RBE-DS-NO2 show that the population living in non-attainment areas (NO2 ≥ 30 μg/m3) grew from 376 million in 2005 to 612 million in 2012, then declined to 404 million by 2020. Unlike this national trend, exposure levels in several major cities (e.g., Shanghai and Chengdu) continued to increase during 2012–2020, driven by population growth and urban migration. Furthermore, this study revealed that low-resolution dataset (i.e., the 10 km intermediate dataset before the downscaling) overestimated NO2 levels, due to the limited specificity of the low-resolution model in simulating the relationship between NO2 and the predictor variables. Such limited specificity likely biased previous long-term NO2 exposure and health impact studies employing low-resolution datasets. The RBE-DS-NO2 dataset enables robust long-term assessments of NO2 exposure and health impacts in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏青荷发布了新的文献求助10
1秒前
qqa完成签到,获得积分10
3秒前
shaco发布了新的文献求助10
4秒前
mercury完成签到,获得积分10
7秒前
归途完成签到 ,获得积分10
8秒前
上官若男应助和谐的迎天采纳,获得10
9秒前
11秒前
12秒前
12秒前
小二郎应助马鑫麟采纳,获得10
16秒前
科研通AI2S应助顺心的水之采纳,获得10
17秒前
搜集达人应助姚美阁采纳,获得10
17秒前
sdahjjyk发布了新的文献求助10
17秒前
上官若男应助奋斗天德采纳,获得10
18秒前
姜且发布了新的文献求助10
18秒前
AdventureChen完成签到 ,获得积分10
19秒前
19秒前
德鲁大叔完成签到,获得积分10
20秒前
斯文败类应助鲑鱼采纳,获得10
20秒前
大个应助zilhua采纳,获得10
21秒前
24秒前
妍妍发布了新的文献求助10
25秒前
丘比特应助sdahjjyk采纳,获得10
25秒前
爆米花应助sxy采纳,获得10
26秒前
隐形曼青应助清脆的冷松采纳,获得10
26秒前
27秒前
斯文败类应助LEI采纳,获得10
27秒前
28秒前
29秒前
马鑫麟发布了新的文献求助10
30秒前
无奈的焦完成签到,获得积分10
30秒前
奋斗天德发布了新的文献求助10
32秒前
惊天大幂幂完成签到,获得积分10
32秒前
求助吃草小河马完成签到,获得积分10
35秒前
我是老大应助姜且采纳,获得10
37秒前
38秒前
Nathan完成签到 ,获得积分10
41秒前
41秒前
熹微发布了新的文献求助10
42秒前
小火孩发布了新的文献求助10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136151
求助须知:如何正确求助?哪些是违规求助? 2787065
关于积分的说明 7780419
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298945
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870