顺铂
自噬
A549电池
细胞凋亡
癌症研究
肺癌
活力测定
化学
免疫印迹
生物
医学
肿瘤科
化疗
生物化学
遗传学
基因
作者
Enhui Gong,Jiongwei Pan,Zaiting Ye,Xiaoping Cai,Hao Zheng,Zhangyong Yin,Yiwei Jiang,Xin Wang,Zhuo Cao
摘要
Abstract Objectives Reportedly, ganoderic acid A (GA-A) increases the sensitivity of hepatocellular carcinoma cells to cisplatin (DDP) chemotherapy. Therefore, this study aims to fathom the influence of GA-A on lung cancer cells. Methods After the construction of A549/DDP cells through exposure to DDP, the effects of GA-A on A549 and A549/DDP cells were revealed by cellular functional assays, western blot and quantitative reverse transcription PCR (qRT-PCR). The DDP-resistant lung cancer tumor was established in vivo, followed by further validation of the mechanism of GA-A. Results GA-A suppressed the viability, migration, and invasion while downregulating Beclin and autophagy marker LC3II/LC3I levels and upregulating P62 levels in A549 and A549/DDP cells. These effects were reversed by circFLNA overexpression. Also, GA-A reinforced the sensitivity of A549/DDP cells to DDP, elevated the apoptosis and regulated the circFLNA/miR-486-3p/cytochrome P450 family 1 subfamily A member 1 (CYP1A1)/X-ray repair cross-complementing 1 (XRCC1) axis. The reversal effects of circFLNA overexpression on GA-A-induced viability and apoptosis of A549/DDP cells could all be counteracted in the presence of 3MA. GA-A inhibited lung cancer tumor growth and blocked autophagy. Conclusion GA-A suppresses autophagy by regulating the circFLNA/miR-486-3p/CYP1A1/XRCC1 axis to strengthen the sensitivity of lung cancer cells to DDP.
科研通智能强力驱动
Strongly Powered by AbleSci AI