Robust battery lifetime prediction with noisy measurements via total-least-squares regression

过度拟合 计算机科学 偏最小二乘回归 回归 特征选择 回归分析 噪音(视频) 机器学习 过程(计算) 电池(电) 数据挖掘 人工智能 人工神经网络 统计 功率(物理) 数学 操作系统 图像(数学) 物理 量子力学
作者
Ting Lu,Xiaoang Zhai,Sihui Chen,Yang Liu,Jiayu Wan,Guohua Liu,Xin Li
出处
期刊:Integration [Elsevier BV]
卷期号:96: 102136-102136 被引量:1
标识
DOI:10.1016/j.vlsi.2023.102136
摘要

—Machine learning technologies have gained significant popularity in rechargeable battery research in recent years, and have been extensively adopted to construct data-driven solutions to tackle multiple challenges for energy storage in embedded computing systems. An important application in this area is the machine learning-based battery lifetime prediction, which formulates regression models to estimate the remaining lifetimes of batteries given the measurement data collected from the testing process. Due to the non-idealities in practical operations, these measurements are usually impacted by various types of interference, thereby involving noise on both input variables and regression labels. Therefore, existing works that focus solely on minimizing the regression error on the labels cannot adequately adapt to the practical scenarios with noisy variables. To address this issue, this study adopts total least squares (TLS) to construct a regression model that achieves superior regression accuracy by simultaneously optimizing the estimation of both variables and labels. Furthermore, due to the expensive cost for collecting battery cycling data, the number of labeled data samples used for predictive modeling is often limited. It, in turn, can easily lead to overfitting, especially for TLS, which has a relatively larger set of problem unknowns to solve. To tackle this difficulty, the TLS method is investigated conjoined with stepwise feature selection in this work. Our numerical experiments based on public datasets for commercial Lithium-Ion batteries demonstrate that the proposed method can effectively reduce the modeling error by up to 11.95 %, compared against the classic baselines with consideration of noisy measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助孙雪君采纳,获得10
刚刚
1秒前
affff完成签到 ,获得积分10
1秒前
Hua发布了新的文献求助100
1秒前
2秒前
2秒前
taster驳回了凉凉应助
3秒前
听话的白易完成签到,获得积分20
3秒前
yangzhang完成签到,获得积分10
3秒前
超帅的豪英完成签到,获得积分10
4秒前
liam完成签到,获得积分10
5秒前
gaojing完成签到,获得积分10
6秒前
6秒前
研友_xnEOX8完成签到,获得积分10
6秒前
RMgX发布了新的文献求助10
7秒前
111完成签到,获得积分10
7秒前
机智雁凡完成签到,获得积分10
7秒前
花花完成签到 ,获得积分10
8秒前
红叶完成签到,获得积分10
8秒前
向蔚发布了新的文献求助10
8秒前
ldd完成签到,获得积分10
10秒前
坦率的惊蛰完成签到,获得积分10
10秒前
fei完成签到,获得积分10
10秒前
潇洒的白昼完成签到,获得积分10
11秒前
Owen应助赵寇采纳,获得10
11秒前
研友_xnEOX8发布了新的文献求助30
11秒前
12秒前
蓝豆子完成签到 ,获得积分10
12秒前
12秒前
无辜的夏兰完成签到,获得积分10
13秒前
weijian完成签到,获得积分10
13秒前
洪伟完成签到,获得积分10
15秒前
爽歪歪完成签到,获得积分10
15秒前
huco完成签到,获得积分10
16秒前
LI电池完成签到,获得积分10
16秒前
哈哈哈哈发布了新的文献求助10
16秒前
的地方法规完成签到,获得积分10
17秒前
17秒前
爱情哈尔完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259