Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: A clinical evaluation

医学 接收机工作特性 放射科 结直肠癌 图像质量 医学诊断 迭代重建 癌症 核医学 人工智能 内科学 图像(数学) 计算机科学
作者
Jiao Li,Junying Zhu,Yixuan Zou,Guozhi Zhang,Pan Zhu,Ning Wang,Peiyi Xie
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:171: 111301-111301
标识
DOI:10.1016/j.ejrad.2024.111301
摘要

Objectives To investigate the clinical value of a novel deep-learning based CT reconstruction algorithm, artificial intelligence iterative reconstruction (AIIR), in diagnostic imaging of colorectal cancer (CRC). Methods This study retrospectively enrolled 217 patients with pathologically confirmed CRC. CT images were reconstructed with the AIIR algorithm and compared with those originally obtained with hybrid iterative reconstruction (HIR). Objective image quality was evaluated in terms of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was graded on the conspicuity of tumor margin and enhancement pattern as well as the certainty in diagnosing organ invasion and regional lymphadenopathy. In patients with surgical pathology (n = 116), the performance of diagnosing visceral peritoneum invasion was characterized using receiver operating characteristic (ROC) analysis. Changes of diagnostic thinking in diagnosing hepatic metastases were assessed through lesion classification confidence. Results The SNRs and CNRs on AIIR images were significantly higher than those on HIR images (all p < 0.001). The AIIR was scored higher for all subjective metrics (all p < 0.001) except for the certainty of diagnosing regional lymphadenopathy (p = 0.467). In diagnosing visceral peritoneum invasion, higher area under curve (AUC) of the ROC was found for AIIR than HIR (0.87 vs 0.77, p = 0.001). In assessing hepatic metastases, AIIR was found capable of correcting the misdiagnosis and improving the diagnostic confidence provided by HIR (p = 0.01). Conclusions Compared to HIR, AIIR offers better image quality, improves the diagnostic performance regarding CRC, and thus has the potential for application in routine abdominal CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hang发布了新的文献求助10
刚刚
最初发布了新的文献求助10
1秒前
Lesile完成签到,获得积分10
1秒前
竹筏过海应助公西翠萱采纳,获得30
1秒前
1秒前
海子完成签到,获得积分10
2秒前
沉敛一生发布了新的文献求助10
2秒前
柏忆南完成签到 ,获得积分10
2秒前
li发布了新的文献求助10
2秒前
dldddz发布了新的文献求助10
2秒前
jimmy完成签到,获得积分10
2秒前
田様应助侦察兵采纳,获得10
2秒前
鑫渊完成签到,获得积分10
2秒前
天冷了hhhdh完成签到,获得积分10
3秒前
ting完成签到,获得积分10
3秒前
微笑完成签到,获得积分10
3秒前
可爱的函函应助西宁阿采纳,获得30
4秒前
蓝莓松饼发布了新的文献求助10
4秒前
5秒前
哈哈发布了新的文献求助10
5秒前
高高发布了新的文献求助10
5秒前
一拳一个小欧阳完成签到 ,获得积分10
5秒前
明雨天地完成签到,获得积分10
5秒前
deathmask完成签到 ,获得积分10
5秒前
老实志泽完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
hata完成签到,获得积分10
6秒前
Pangsj完成签到,获得积分10
7秒前
7秒前
青蛙旅行完成签到 ,获得积分10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
8秒前
小马甲应助mimi采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
雪白问兰应助科研通管家采纳,获得30
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672