Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: A clinical evaluation

医学 接收机工作特性 放射科 结直肠癌 图像质量 医学诊断 迭代重建 癌症 核医学 人工智能 内科学 图像(数学) 计算机科学
作者
Jiao Li,Junying Zhu,Yixuan Zou,Guozhi Zhang,Pan Zhu,Ning Wang,Peiyi Xie
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:171: 111301-111301 被引量:9
标识
DOI:10.1016/j.ejrad.2024.111301
摘要

Objectives To investigate the clinical value of a novel deep-learning based CT reconstruction algorithm, artificial intelligence iterative reconstruction (AIIR), in diagnostic imaging of colorectal cancer (CRC). Methods This study retrospectively enrolled 217 patients with pathologically confirmed CRC. CT images were reconstructed with the AIIR algorithm and compared with those originally obtained with hybrid iterative reconstruction (HIR). Objective image quality was evaluated in terms of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was graded on the conspicuity of tumor margin and enhancement pattern as well as the certainty in diagnosing organ invasion and regional lymphadenopathy. In patients with surgical pathology (n = 116), the performance of diagnosing visceral peritoneum invasion was characterized using receiver operating characteristic (ROC) analysis. Changes of diagnostic thinking in diagnosing hepatic metastases were assessed through lesion classification confidence. Results The SNRs and CNRs on AIIR images were significantly higher than those on HIR images (all p < 0.001). The AIIR was scored higher for all subjective metrics (all p < 0.001) except for the certainty of diagnosing regional lymphadenopathy (p = 0.467). In diagnosing visceral peritoneum invasion, higher area under curve (AUC) of the ROC was found for AIIR than HIR (0.87 vs 0.77, p = 0.001). In assessing hepatic metastases, AIIR was found capable of correcting the misdiagnosis and improving the diagnostic confidence provided by HIR (p = 0.01). Conclusions Compared to HIR, AIIR offers better image quality, improves the diagnostic performance regarding CRC, and thus has the potential for application in routine abdominal CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘书章完成签到,获得积分20
刚刚
cj发布了新的文献求助10
1秒前
whatislove发布了新的文献求助10
2秒前
aa完成签到 ,获得积分10
2秒前
MrH完成签到,获得积分10
3秒前
大个应助喝杯水再走采纳,获得10
4秒前
吴学成发布了新的文献求助10
5秒前
5秒前
董鑫完成签到,获得积分10
5秒前
蛙蛙发布了新的文献求助10
6秒前
7秒前
上官若男应助Y_Jfeng采纳,获得10
8秒前
8秒前
麦子完成签到 ,获得积分10
9秒前
corazon发布了新的文献求助30
9秒前
CR完成签到,获得积分10
10秒前
邱名仕完成签到 ,获得积分10
10秒前
11秒前
花开富贵发布了新的文献求助10
12秒前
Lee关闭了Lee文献求助
13秒前
无极微光应助www采纳,获得20
13秒前
alexlpb完成签到,获得积分0
13秒前
江小白发布了新的文献求助10
14秒前
15秒前
英子发布了新的文献求助10
15秒前
鲁迪完成签到,获得积分10
15秒前
大模型应助cj采纳,获得10
17秒前
科研通AI2S应助xcc采纳,获得10
17秒前
18秒前
蓬蓬完成签到,获得积分10
19秒前
曲沉鱼发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
corazon发布了新的文献求助30
21秒前
无极微光应助yana采纳,获得20
22秒前
Owen应助江风采纳,获得10
22秒前
24秒前
yy完成签到,获得积分10
26秒前
彭于晏应助Serena采纳,获得30
27秒前
学习发布了新的文献求助30
29秒前
yy发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768