Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: A clinical evaluation

医学 接收机工作特性 放射科 结直肠癌 图像质量 医学诊断 迭代重建 癌症 核医学 人工智能 内科学 图像(数学) 计算机科学
作者
Jiao Li,Junying Zhu,Yixuan Zou,Guozhi Zhang,Pan Zhu,Ning Wang,Peiyi Xie
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:171: 111301-111301 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111301
摘要

Objectives To investigate the clinical value of a novel deep-learning based CT reconstruction algorithm, artificial intelligence iterative reconstruction (AIIR), in diagnostic imaging of colorectal cancer (CRC). Methods This study retrospectively enrolled 217 patients with pathologically confirmed CRC. CT images were reconstructed with the AIIR algorithm and compared with those originally obtained with hybrid iterative reconstruction (HIR). Objective image quality was evaluated in terms of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was graded on the conspicuity of tumor margin and enhancement pattern as well as the certainty in diagnosing organ invasion and regional lymphadenopathy. In patients with surgical pathology (n = 116), the performance of diagnosing visceral peritoneum invasion was characterized using receiver operating characteristic (ROC) analysis. Changes of diagnostic thinking in diagnosing hepatic metastases were assessed through lesion classification confidence. Results The SNRs and CNRs on AIIR images were significantly higher than those on HIR images (all p < 0.001). The AIIR was scored higher for all subjective metrics (all p < 0.001) except for the certainty of diagnosing regional lymphadenopathy (p = 0.467). In diagnosing visceral peritoneum invasion, higher area under curve (AUC) of the ROC was found for AIIR than HIR (0.87 vs 0.77, p = 0.001). In assessing hepatic metastases, AIIR was found capable of correcting the misdiagnosis and improving the diagnostic confidence provided by HIR (p = 0.01). Conclusions Compared to HIR, AIIR offers better image quality, improves the diagnostic performance regarding CRC, and thus has the potential for application in routine abdominal CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刀刀完成签到,获得积分10
刚刚
ZYSNNNN完成签到,获得积分10
刚刚
科研通AI2S应助shenzhou9采纳,获得10
刚刚
长情诗蕾完成签到,获得积分10
刚刚
白若可依发布了新的文献求助10
刚刚
一轮明月发布了新的文献求助10
刚刚
Cc发布了新的文献求助10
1秒前
Hello应助JXY采纳,获得10
1秒前
打工肥仔完成签到,获得积分0
1秒前
syz66628发布了新的文献求助10
2秒前
小蘑菇应助耍酷小贾采纳,获得10
2秒前
xiaoyu完成签到,获得积分10
2秒前
我蛋挞呢应助leo采纳,获得10
2秒前
qise应助mhq采纳,获得10
3秒前
lanananan完成签到,获得积分10
3秒前
3秒前
刘晓海完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Orange应助wu采纳,获得10
4秒前
康康发布了新的文献求助30
4秒前
科研通AI5应助徐昊雯采纳,获得10
4秒前
4秒前
科研通AI5应助wjh采纳,获得10
5秒前
科研通AI5应助香蕉芝麻采纳,获得10
5秒前
SHIROKO完成签到,获得积分10
5秒前
April完成签到,获得积分10
6秒前
6秒前
YYGQ完成签到,获得积分10
7秒前
Achen完成签到,获得积分10
7秒前
7秒前
研雪发布了新的文献求助10
7秒前
fwz发布了新的文献求助10
8秒前
清歌完成签到,获得积分10
8秒前
大个应助小灵通采纳,获得10
8秒前
科目三应助101采纳,获得10
8秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646