Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: A clinical evaluation

医学 接收机工作特性 放射科 结直肠癌 图像质量 医学诊断 迭代重建 癌症 核医学 人工智能 内科学 图像(数学) 计算机科学
作者
Jiao Li,Junying Zhu,Yixuan Zou,Guozhi Zhang,Pan Zhu,Ning Wang,Peiyi Xie
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:171: 111301-111301
标识
DOI:10.1016/j.ejrad.2024.111301
摘要

Objectives To investigate the clinical value of a novel deep-learning based CT reconstruction algorithm, artificial intelligence iterative reconstruction (AIIR), in diagnostic imaging of colorectal cancer (CRC). Methods This study retrospectively enrolled 217 patients with pathologically confirmed CRC. CT images were reconstructed with the AIIR algorithm and compared with those originally obtained with hybrid iterative reconstruction (HIR). Objective image quality was evaluated in terms of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was graded on the conspicuity of tumor margin and enhancement pattern as well as the certainty in diagnosing organ invasion and regional lymphadenopathy. In patients with surgical pathology (n = 116), the performance of diagnosing visceral peritoneum invasion was characterized using receiver operating characteristic (ROC) analysis. Changes of diagnostic thinking in diagnosing hepatic metastases were assessed through lesion classification confidence. Results The SNRs and CNRs on AIIR images were significantly higher than those on HIR images (all p < 0.001). The AIIR was scored higher for all subjective metrics (all p < 0.001) except for the certainty of diagnosing regional lymphadenopathy (p = 0.467). In diagnosing visceral peritoneum invasion, higher area under curve (AUC) of the ROC was found for AIIR than HIR (0.87 vs 0.77, p = 0.001). In assessing hepatic metastases, AIIR was found capable of correcting the misdiagnosis and improving the diagnostic confidence provided by HIR (p = 0.01). Conclusions Compared to HIR, AIIR offers better image quality, improves the diagnostic performance regarding CRC, and thus has the potential for application in routine abdominal CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
懵懂的钢笔关注了科研通微信公众号
1秒前
XXXXH完成签到,获得积分10
2秒前
3秒前
细心的雨竹完成签到,获得积分10
3秒前
云风驳回了Orange应助
3秒前
wy完成签到,获得积分10
4秒前
4秒前
柳祎礼完成签到 ,获得积分10
5秒前
5秒前
7秒前
绝尘发布了新的文献求助10
7秒前
哈哈哈发布了新的文献求助10
8秒前
迟迟发布了新的文献求助10
8秒前
yunnie完成签到,获得积分20
9秒前
Zhang发布了新的文献求助10
10秒前
12秒前
YYiijj完成签到 ,获得积分10
14秒前
令狐冲应助NJ采纳,获得10
15秒前
16秒前
chenyunxia应助zjusmine采纳,获得10
19秒前
栗子发布了新的文献求助10
19秒前
20秒前
21秒前
22秒前
22秒前
田様应助迟迟采纳,获得80
23秒前
大模型应助绝尘采纳,获得10
24秒前
24秒前
甜美鱼完成签到,获得积分10
25秒前
25秒前
Zhang完成签到,获得积分10
28秒前
传奇3应助lyx采纳,获得10
28秒前
aabb发布了新的文献求助10
29秒前
米莉森的锋刃完成签到,获得积分10
31秒前
32秒前
34秒前
英姑应助liwanyi采纳,获得10
34秒前
科研通AI2S应助Yu_6nd23采纳,获得10
34秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214612
求助须知:如何正确求助?哪些是违规求助? 2863231
关于积分的说明 8137661
捐赠科研通 2529429
什么是DOI,文献DOI怎么找? 1363668
科研通“疑难数据库(出版商)”最低求助积分说明 643903
邀请新用户注册赠送积分活动 616437