Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: A clinical evaluation

医学 接收机工作特性 放射科 结直肠癌 图像质量 医学诊断 迭代重建 癌症 核医学 人工智能 内科学 图像(数学) 计算机科学
作者
Jiao Li,Junying Zhu,Yixuan Zou,Guozhi Zhang,Pan Zhu,Ning Wang,Peiyi Xie
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:171: 111301-111301 被引量:5
标识
DOI:10.1016/j.ejrad.2024.111301
摘要

Objectives To investigate the clinical value of a novel deep-learning based CT reconstruction algorithm, artificial intelligence iterative reconstruction (AIIR), in diagnostic imaging of colorectal cancer (CRC). Methods This study retrospectively enrolled 217 patients with pathologically confirmed CRC. CT images were reconstructed with the AIIR algorithm and compared with those originally obtained with hybrid iterative reconstruction (HIR). Objective image quality was evaluated in terms of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was graded on the conspicuity of tumor margin and enhancement pattern as well as the certainty in diagnosing organ invasion and regional lymphadenopathy. In patients with surgical pathology (n = 116), the performance of diagnosing visceral peritoneum invasion was characterized using receiver operating characteristic (ROC) analysis. Changes of diagnostic thinking in diagnosing hepatic metastases were assessed through lesion classification confidence. Results The SNRs and CNRs on AIIR images were significantly higher than those on HIR images (all p < 0.001). The AIIR was scored higher for all subjective metrics (all p < 0.001) except for the certainty of diagnosing regional lymphadenopathy (p = 0.467). In diagnosing visceral peritoneum invasion, higher area under curve (AUC) of the ROC was found for AIIR than HIR (0.87 vs 0.77, p = 0.001). In assessing hepatic metastases, AIIR was found capable of correcting the misdiagnosis and improving the diagnostic confidence provided by HIR (p = 0.01). Conclusions Compared to HIR, AIIR offers better image quality, improves the diagnostic performance regarding CRC, and thus has the potential for application in routine abdominal CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
1秒前
1秒前
HHH发布了新的文献求助10
1秒前
1秒前
1秒前
呆熊完成签到,获得积分10
2秒前
笑点低的铁身完成签到 ,获得积分10
2秒前
3秒前
111完成签到,获得积分10
3秒前
3秒前
薛十七应助温婉的篮球采纳,获得10
4秒前
liang应助狂野傲珊采纳,获得10
4秒前
颜靖仇发布了新的文献求助10
4秒前
Hu发布了新的文献求助10
4秒前
5秒前
5秒前
爆米花应助加油加油采纳,获得10
5秒前
归尘应助岩伴采纳,获得10
5秒前
无花果应助Rosemary采纳,获得10
6秒前
天天快乐应助口羊采纳,获得10
6秒前
huskies发布了新的文献求助10
6秒前
LLCHEN完成签到 ,获得积分10
7秒前
脑洞疼应助lxjjj采纳,获得10
7秒前
皮咻完成签到,获得积分10
8秒前
mooonyue发布了新的文献求助10
8秒前
君君完成签到,获得积分10
9秒前
Aura发布了新的文献求助10
10秒前
11秒前
情怀应助呆熊采纳,获得10
11秒前
12秒前
KKLJOJ发布了新的文献求助10
12秒前
12秒前
12秒前
111发布了新的文献求助10
13秒前
小路发布了新的文献求助10
13秒前
有怀完成签到,获得积分10
15秒前
ZZ完成签到,获得积分10
15秒前
英吉利25发布了新的文献求助30
15秒前
15秒前
wangluyuan完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072971
求助须知:如何正确求助?哪些是违规求助? 4293165
关于积分的说明 13377479
捐赠科研通 4114472
什么是DOI,文献DOI怎么找? 2252995
邀请新用户注册赠送积分活动 1257787
关于科研通互助平台的介绍 1190665