SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D Object Detection

激光雷达 计算机科学 水准点(测量) 计算机视觉 人工智能 目标检测 保险丝(电气) 模态(人机交互) 管道(软件) 转化(遗传学) 对象(语法) 编码(集合论) 探测器 模式识别(心理学) 遥感 电信 生物化学 化学 大地测量学 工程类 集合(抽象数据类型) 地质学 电气工程 基因 程序设计语言 地理
作者
Yichen Xie,Chenfeng Xu,Marie‐Julie Rakotosaona,Patrick Rim,Federico Tombari,Kurt Keutzer,Masayoshi Tomizuka,Wei Zhan
标识
DOI:10.1109/iccv51070.2023.01613
摘要

By identifying four important components of existing LiDAR-camera 3D object detection methods (LiDAR and camera candidates, transformation, and fusion outputs), we observe that all existing methods either find dense candidates or yield dense representations of scenes. However, given that objects occupy only a small part of a scene, finding dense candidates and generating dense representations is noisy and inefficient. We propose SparseFusion, a novel multi-sensor 3D detection method that exclusively uses sparse candidates and sparse representations. Specifically, SparseFusion utilizes the outputs of parallel detectors in the LiDAR and camera modalities as sparse candidates for fusion. We transform the camera candidates into the LiDAR coordinate space by disentangling the object representations. Then, we can fuse the multi-modality candidates in a unified 3D space by a lightweight self-attention module. To mitigate negative transfer between modalities, we propose novel semantic and geometric cross-modality transfer modules that are applied prior to the modality-specific detectors. SparseFusion achieves state-of-the-art performance on the nuScenes benchmark while also running at the fastest speed, even outperforming methods with stronger backbones. We perform extensive experiments to demonstrate the effectiveness and efficiency of our modules and overall method pipeline. Our code will be made publicly available at https://github.com/yichen928/SparseFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
猪猪hero发布了新的文献求助10
6秒前
7秒前
ma完成签到,获得积分20
9秒前
_ban完成签到 ,获得积分10
11秒前
blingbling发布了新的文献求助10
11秒前
知道发布了新的文献求助10
12秒前
2570827174完成签到 ,获得积分10
12秒前
ma发布了新的文献求助10
14秒前
华仔应助我要发nature采纳,获得10
15秒前
我想顺利毕业er关注了科研通微信公众号
15秒前
赛赛完成签到 ,获得积分10
15秒前
CipherSage应助lsy采纳,获得10
16秒前
18秒前
安an发布了新的文献求助10
21秒前
23秒前
2570827174关注了科研通微信公众号
26秒前
27秒前
小当家完成签到,获得积分10
27秒前
Tt发布了新的文献求助10
27秒前
29秒前
33秒前
科研小李发布了新的文献求助10
33秒前
小唐完成签到,获得积分10
34秒前
34秒前
深情安青应助blingbling采纳,获得30
34秒前
Akim应助邢文瑞采纳,获得10
34秒前
李健的小迷弟应助Tt采纳,获得10
36秒前
NexusExplorer应助木木木木木采纳,获得10
38秒前
39秒前
弯弯完成签到,获得积分10
39秒前
Steven完成签到,获得积分10
41秒前
42秒前
佳思思完成签到,获得积分10
42秒前
无语的冰淇淋完成签到 ,获得积分10
43秒前
Suraim发布了新的文献求助10
43秒前
Laity完成签到,获得积分10
44秒前
zzy发布了新的文献求助10
45秒前
搜集达人应助紧张的妖妖采纳,获得10
47秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962851
求助须知:如何正确求助?哪些是违规求助? 3508777
关于积分的说明 11143063
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791638
邀请新用户注册赠送积分活动 873002
科研通“疑难数据库(出版商)”最低求助积分说明 803577