计算机科学
投票
姿势
人工智能
稳健性(进化)
推论
模式识别(心理学)
多数决原则
变压器
电压
量子力学
物理
基因
法学
政治学
政治
化学
生物化学
作者
Jun Zhou,Kai Chen,Linlin Xu,Qi Dou,Jing Qin
标识
DOI:10.1109/iccv51070.2023.01284
摘要
One critical challenge in 6D object pose estimation from a single RGBD image is efficient integration of two different modalities, i.e., color and depth. In this work, we tackle this problem by a novel Deep Fusion Transformer (DFTr) block that can aggregate cross-modality features for improving pose estimation. Unlike existing fusion methods, the proposed DFTr can better model cross-modality semantic correlation by leveraging their semantic similarity, such that globally enhanced features from different modalities can be better integrated for improved information extraction. Moreover, to further improve robustness and efficiency, we introduce a novel weighted vector-wise voting algorithm that employs a non-iterative global optimization strategy for precise 3D keypoint localization while achieving near real-time inference. Extensive experiments show the effectiveness and strong generalization capability of our proposed 3D keypoint voting algorithm. Results on four widely used benchmarks also demonstrate that our method outperforms the state-of-the-art methods by large margins. Code is available at https://github.com/junzastar/DFTr_Voting.
科研通智能强力驱动
Strongly Powered by AbleSci AI