亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AF-OS-ELM-MVE: A new online sequential extreme learning machine of dam safety monitoring model for structure deformation estimation

极限学习机 人工智能 机器学习 过程(计算) 计算机科学 流离失所(心理学) 安全监测 遗忘 支持向量机 差异(会计) 算法 工程类 数据挖掘 人工神经网络 操作系统 会计 哲学 业务 生物技术 生物 心理治疗师 语言学 心理学
作者
Ye Zhang,Wenwei Zhang,Yanlong Li,Lifeng Wen,Xinjian Sun
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102345-102345 被引量:38
标识
DOI:10.1016/j.aei.2023.102345
摘要

Dam deformation monitoring is an important task in hydraulic engineering projects. Traditional statistical methods and machine learning algorithms have been widely applied in structural safety prediction due to the application’s convenience. However, most machine learning algorithms are offline models and are not suitable for simulating the complex dynamic process of dam displacement. In addition, dam safety monitoring should quantify the uncertainty of the time-dependent displacement and establish reliable prediction intervals. As a result, an online learning model that can qualify prediction intervals is necessary. In this paper, an online learning algorithm named AF-OS-ELM-MVE is proposed to solve the problems. It is based on the OS-ELM algorithm and optimized using the adaptive forgetting factor mechanism. Through selective forgetting for parameter tuning, it achieves self-adaptation to the underlying physical mechanism between the factors and the displacement data. Mean Variance Estimation (MVE) is also adapted to establish the new hybrid model. It can be used to estimate the variance of the prediction process, and the model can generate prediction intervals based on the minimum probability theory. The AF-OS-ELM-MVE model is verified using long-term monitoring data and the performance comparisons were made with a number of state-of-the-art models. The correlation coefficients of the proposed model in point prediction are above 0.99 for measuring points of different elevations, and at a 95% confidence level, it achieves 100% coverage of real displacements. The results demonstrate the effectiveness of the proposed model in predicting dam deformations and provide a more solid basis for dam safety analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮岫完成签到 ,获得积分10
8秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
17秒前
18秒前
rebeycca发布了新的文献求助10
24秒前
奋斗的马里奥完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
1分钟前
lei完成签到,获得积分20
1分钟前
跳跃紫真完成签到,获得积分10
1分钟前
CodeCraft应助lei采纳,获得10
1分钟前
大玉124完成签到 ,获得积分10
1分钟前
1分钟前
刘菲特1发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
yr应助科研通管家采纳,获得10
2分钟前
co完成签到,获得积分10
2分钟前
gszy1975发布了新的文献求助10
2分钟前
香蕉觅云应助飞常爱你哦采纳,获得10
2分钟前
2分钟前
2分钟前
跳跃紫真发布了新的文献求助10
2分钟前
LeeHx完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
德芙纵向丝滑完成签到,获得积分10
3分钟前
co驳回了JamesPei应助
3分钟前
lzy完成签到,获得积分10
3分钟前
科研通AI6.1应助刘不动采纳,获得150
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439