AF-OS-ELM-MVE: A new online sequential extreme learning machine of dam safety monitoring model for structure deformation estimation

极限学习机 人工智能 机器学习 过程(计算) 计算机科学 流离失所(心理学) 安全监测 遗忘 支持向量机 差异(会计) 算法 工程类 数据挖掘 人工神经网络 操作系统 会计 哲学 业务 生物技术 生物 心理治疗师 语言学 心理学
作者
Ye Zhang,Wenwei Zhang,Yanlong Li,Lifeng Wen,Xinjian Sun
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102345-102345 被引量:38
标识
DOI:10.1016/j.aei.2023.102345
摘要

Dam deformation monitoring is an important task in hydraulic engineering projects. Traditional statistical methods and machine learning algorithms have been widely applied in structural safety prediction due to the application’s convenience. However, most machine learning algorithms are offline models and are not suitable for simulating the complex dynamic process of dam displacement. In addition, dam safety monitoring should quantify the uncertainty of the time-dependent displacement and establish reliable prediction intervals. As a result, an online learning model that can qualify prediction intervals is necessary. In this paper, an online learning algorithm named AF-OS-ELM-MVE is proposed to solve the problems. It is based on the OS-ELM algorithm and optimized using the adaptive forgetting factor mechanism. Through selective forgetting for parameter tuning, it achieves self-adaptation to the underlying physical mechanism between the factors and the displacement data. Mean Variance Estimation (MVE) is also adapted to establish the new hybrid model. It can be used to estimate the variance of the prediction process, and the model can generate prediction intervals based on the minimum probability theory. The AF-OS-ELM-MVE model is verified using long-term monitoring data and the performance comparisons were made with a number of state-of-the-art models. The correlation coefficients of the proposed model in point prediction are above 0.99 for measuring points of different elevations, and at a 95% confidence level, it achieves 100% coverage of real displacements. The results demonstrate the effectiveness of the proposed model in predicting dam deformations and provide a more solid basis for dam safety analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
boyis完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
YR完成签到 ,获得积分10
5秒前
5秒前
5秒前
落寞剑成完成签到 ,获得积分10
6秒前
慕青应助WYN采纳,获得10
7秒前
7秒前
7秒前
温柔柜子发布了新的文献求助10
7秒前
9秒前
9秒前
Mito2009完成签到,获得积分10
9秒前
littleby发布了新的文献求助10
9秒前
sling116完成签到,获得积分10
11秒前
哈哈发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
阚曦完成签到,获得积分10
12秒前
Mito2009发布了新的文献求助10
12秒前
13秒前
追梦人完成签到,获得积分10
13秒前
顾矜应助sinlar采纳,获得10
15秒前
16秒前
ylkylk发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
online1881发布了新的文献求助10
18秒前
希望天下0贩的0应助liu采纳,获得10
19秒前
CAOHOU应助Mito2009采纳,获得10
19秒前
梅花笑发布了新的文献求助10
20秒前
Owen应助奋斗向南采纳,获得10
20秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
温柔柜子发布了新的文献求助10
24秒前
桐桐应助笑点低的映梦采纳,获得10
24秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382