AF-OS-ELM-MVE: A new online sequential extreme learning machine of dam safety monitoring model for structure deformation estimation

极限学习机 人工智能 机器学习 过程(计算) 计算机科学 流离失所(心理学) 安全监测 遗忘 支持向量机 差异(会计) 算法 工程类 数据挖掘 人工神经网络 操作系统 会计 哲学 业务 生物技术 生物 心理治疗师 语言学 心理学
作者
Ye Zhang,Wenwei Zhang,Yanlong Li,Lifeng Wen,Xinjian Sun
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102345-102345
标识
DOI:10.1016/j.aei.2023.102345
摘要

Dam deformation monitoring is an important task in hydraulic engineering projects. Traditional statistical methods and machine learning algorithms have been widely applied in structural safety prediction due to the application’s convenience. However, most machine learning algorithms are offline models and are not suitable for simulating the complex dynamic process of dam displacement. In addition, dam safety monitoring should quantify the uncertainty of the time-dependent displacement and establish reliable prediction intervals. As a result, an online learning model that can qualify prediction intervals is necessary. In this paper, an online learning algorithm named AF-OS-ELM-MVE is proposed to solve the problems. It is based on the OS-ELM algorithm and optimized using the adaptive forgetting factor mechanism. Through selective forgetting for parameter tuning, it achieves self-adaptation to the underlying physical mechanism between the factors and the displacement data. Mean Variance Estimation (MVE) is also adapted to establish the new hybrid model. It can be used to estimate the variance of the prediction process, and the model can generate prediction intervals based on the minimum probability theory. The AF-OS-ELM-MVE model is verified using long-term monitoring data and the performance comparisons were made with a number of state-of-the-art models. The correlation coefficients of the proposed model in point prediction are above 0.99 for measuring points of different elevations, and at a 95% confidence level, it achieves 100% coverage of real displacements. The results demonstrate the effectiveness of the proposed model in predicting dam deformations and provide a more solid basis for dam safety analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
刚刚
天熙发布了新的文献求助10
1秒前
古木完成签到,获得积分10
1秒前
YY发布了新的文献求助10
2秒前
2秒前
2秒前
kk发布了新的文献求助10
2秒前
aylwtt完成签到,获得积分10
2秒前
大力翠阳完成签到,获得积分10
4秒前
adi完成签到,获得积分10
4秒前
dangniuma发布了新的文献求助10
5秒前
谷槐完成签到,获得积分10
5秒前
烟花应助无辜小小采纳,获得10
5秒前
xiaoshaoxia完成签到,获得积分10
5秒前
orixero应助yunyunya采纳,获得10
6秒前
dddjs完成签到,获得积分10
6秒前
今天只做一件事应助Wind采纳,获得10
7秒前
8秒前
8秒前
Akim应助景行行止采纳,获得10
8秒前
Tourist应助lucky采纳,获得10
9秒前
9秒前
SciGPT应助烟雨夕阳采纳,获得10
9秒前
酷波er应助1111111采纳,获得10
10秒前
欢喜的元霜完成签到,获得积分10
10秒前
简单小土豆完成签到,获得积分10
10秒前
12秒前
无私土豆发布了新的文献求助10
12秒前
无辜的蜗牛完成签到 ,获得积分10
12秒前
13秒前
13秒前
田様应助守得云开见月明采纳,获得10
14秒前
Hermione完成签到,获得积分10
14秒前
Echan发布了新的文献求助10
14秒前
小马甲应助11采纳,获得10
14秒前
边宇发布了新的文献求助10
14秒前
李大大完成签到,获得积分20
15秒前
Zhusy发布了新的文献求助10
16秒前
充电宝应助牂牂采纳,获得10
16秒前
浮游应助浪子采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636