钝化
材料科学
结晶
钙钛矿(结构)
成核
化学工程
晶界
能量转换效率
无机化学
纳米技术
光电子学
冶金
化学
有机化学
图层(电子)
工程类
微观结构
作者
Xingyu Pu,Qi Cao,Xilai He,Jie Su,Weiwei Wang,Xue Zhang,Dapeng Wang,Yixin Zhang,Jiabao Yang,Tong Wang,Hui Chen,Long Jiang,Yi Yan,Xingyuan Chen,Xuanhua Li
标识
DOI:10.1002/aenm.202303972
摘要
Abstract Numerous deep/shallow level defects generated at the surface/grain boundaries of perovskite during uncontrollable crystallization pose a formidable challenge to the photovoltaic performance of perovskite solar cells (PSCs). Herein, an organometallic cobaltocenium salt additive, 1‐propanol‐2‐(1,2,3‐triazol‐4‐yl) cobaltocenium hexafluorophosphate (PTCoPF 6 ), is incorporated into the perovskite precursor solution to regulate crystallization and minimize holistic defects for high‐performance inverted PSCs. The cobaltocenium cations and PF 6 − in PTCoPF 6 stabilize the Pb‐I framework and repair the shallow‐level defects of positively and negatively charged vacancies in the perovskite. The N═N in the triazole ring of PTCoPF 6 can passivate the deep‐level defects of uncoordinated lead. The interaction between PTCoPF 6 and perovskite materials delays perovskite nucleation and crystal growth, ensuring high‐quality perovskite with large grains, and suppressing non‐radiative recombination and ion migration. Therefore, the PTCoPF 6 ‐incorporated PSC achieves an impressive power conversion efficiency of 25.03% and outstanding long‐term stability. Unencapsulated and encapsulated PTCoPF 6 ‐incorporated PSCs maintain 93% and 95% of their initial efficiencies under 85 °C storage in a nitrogen atmosphere for 1000 h and maximum power point tracking for nearly 1000 h, respectively. Synergistic crystallization kinetic modulation and deep/shallow level defect passivation with ionized metal‐organic complex additives will become prevalent methods to improve the efficiency and stability of PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI