WSA-YOLO: Weak-Supervised and Adaptive Object Detection in the Low-Light Environment for YOLOV7

人工智能 目标检测 亮度 块(置换群论) 特征(语言学) 计算机科学 计算机视觉 模式识别(心理学) 一致性(知识库) 公制(单位) 残余物 相似性(几何) 噪音(视频) 图像(数学) 数学 算法 工程类 语言学 哲学 物理 几何学 运营管理 光学
作者
Yanming Hui,Jue Wang,Bo Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:3
标识
DOI:10.1109/tim.2024.3350120
摘要

In low-light conditions, the detection scene can be harsh, some fundamental image features of the target to be lost, which can result in the disappearance of essential visual characteristics of the object to be detected. They have failed to balance the connection between the low-level semantic information of low-light images and normal images. This article proposes an algorithm for weak-supervised and adaptive object detection in the low-light environment for YOLOV7 (WSA-YOLO) that utilizes adaptive enhancement to effectively improve object detection capability in low-light environments, addressing this practical issue. The proposed decomposition network decomposes the image into reflectance and illumination maps, which are then enhanced separately. The proposed adaptive residual feature block (ARFB) effectively utilizes the feature correlation between low-light and normal-light images and shares the weights between them to improve parameter reuse capability during parameter prediction using the parameter prediction block. The proposed adaptive adjustment block and consistency loss function are used together to enhance the brightness and suppress noise. Finally, the you only look once (YOLO) framework is utilized for object classification, regression, and prediction. Using the metric mean average precision (mAP) for evaluation on the recognized datasets, the proposed WSA-YOLO has a performance improvement of about 8% in peak signal-to-noise ratio (PSNR), structural similarity index, and natural image quality evaluator (NIQE). And the increase in mAP is about 9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严昌完成签到,获得积分10
刚刚
刚刚
1秒前
传奇3应助如歌采纳,获得10
3秒前
JUST发布了新的文献求助10
3秒前
3秒前
19827353321完成签到,获得积分10
3秒前
勇敢牛牛发布了新的文献求助10
4秒前
5秒前
9秒前
zyt完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
persist完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
15秒前
结实的青荷完成签到,获得积分10
16秒前
安an发布了新的文献求助50
16秒前
语嘘嘘发布了新的文献求助10
17秒前
17秒前
大个应助chen采纳,获得10
18秒前
18秒前
Owen应助落寞的咖啡采纳,获得10
18秒前
19秒前
李健应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
赘婿应助贪玩的霸采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
orixero应助博修采纳,获得100
19秒前
彳亍1117应助科研通管家采纳,获得20
19秒前
lalaland发布了新的文献求助10
19秒前
TiY发布了新的文献求助10
19秒前
FIN应助科研通管家采纳,获得30
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571