亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral Compressive Snapshot Reconstruction via Coupled Low-Rank Subspace Representation and Self-Supervised Deep Network

高光谱成像 快照(计算机存储) 子空间拓扑 人工智能 模式识别(心理学) 计算机科学 计算机视觉 数学 操作系统
作者
Yong Chen,Wenzhen Lai,Wei He,Xi-Le Zhao,Jinshan Zeng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 926-941 被引量:22
标识
DOI:10.1109/tip.2024.3354127
摘要

Coded aperture snapshot spectral imaging (CASSI) is an important technique for capturing three-dimensional (3D) hyperspectral images (HSIs), and involves an inverse problem of reconstructing the 3D HSI from its corresponding coded 2D measurements. Existing model-based and learning-based methods either could not explore the implicit feature of different HSIs or require a large amount of paired data for training, resulting in low reconstruction accuracy or poor generalization performance as well as interpretability. To remedy these deficiencies, this paper proposes a novel HSI reconstruction method, which exploits the global spectral correlation from the HSI itself through a formulation of model-driven low-rank subspace representation and learns the deep prior by a data-driven self-supervised deep learning scheme. Specifically, we firstly develop a model-driven low-rank subspace representation to decompose the HSI as the product of an orthogonal basis and a spatial representation coefficient, then propose a data-driven deep guided spatial-attention network (called DGSAN ) to adaptively reconstruct the implicit spatial feature of HSI by learning the deep coefficient prior (DCP), and finally embed these implicit priors into an iterative optimization framework through a self-supervised training way without requiring any training data. Thus, the proposed method shall enhance the reconstruction accuracy, generalization ability, and interpretability. Extensive experiments on several datasets and imaging systems validate the superiority of our method. The source code and data of this article will be made publicly available at https://github.com/ChenYong1993/LRSDN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
oleskarabach发布了新的文献求助10
5秒前
7秒前
七色光完成签到,获得积分10
12秒前
夏花般灿烂完成签到,获得积分10
13秒前
Yuki完成签到 ,获得积分10
19秒前
26秒前
ptyz霍建华完成签到 ,获得积分10
28秒前
31秒前
34秒前
小熊完成签到,获得积分10
38秒前
39秒前
49秒前
小宇完成签到,获得积分10
53秒前
现代代桃完成签到 ,获得积分10
55秒前
1分钟前
slby完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
怕孤独的小鸭子完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
Zz发布了新的文献求助10
2分钟前
阿童木完成签到 ,获得积分10
2分钟前
Zz完成签到,获得积分20
2分钟前
YifanWang完成签到,获得积分0
2分钟前
踏云完成签到 ,获得积分10
2分钟前
花城诚成完成签到,获得积分10
2分钟前
2分钟前
2分钟前
粗暴的坤发布了新的文献求助10
3分钟前
陶醉谷秋发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
山山完成签到 ,获得积分10
3分钟前
orixero应助薛枏采纳,获得10
3分钟前
陶醉谷秋完成签到,获得积分20
3分钟前
科研通AI6.1应助lzmcsp采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788626
求助须知:如何正确求助?哪些是违规求助? 5709683
关于积分的说明 15473737
捐赠科研通 4916631
什么是DOI,文献DOI怎么找? 2646497
邀请新用户注册赠送积分活动 1594168
关于科研通互助平台的介绍 1548580