已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral Compressive Snapshot Reconstruction via Coupled Low-Rank Subspace Representation and Self-Supervised Deep Network

高光谱成像 快照(计算机存储) 子空间拓扑 人工智能 模式识别(心理学) 计算机科学 计算机视觉 数学 操作系统
作者
Yong Chen,Wenzhen Lai,Wei He,Xi-Le Zhao,Jinshan Zeng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 926-941 被引量:22
标识
DOI:10.1109/tip.2024.3354127
摘要

Coded aperture snapshot spectral imaging (CASSI) is an important technique for capturing three-dimensional (3D) hyperspectral images (HSIs), and involves an inverse problem of reconstructing the 3D HSI from its corresponding coded 2D measurements. Existing model-based and learning-based methods either could not explore the implicit feature of different HSIs or require a large amount of paired data for training, resulting in low reconstruction accuracy or poor generalization performance as well as interpretability. To remedy these deficiencies, this paper proposes a novel HSI reconstruction method, which exploits the global spectral correlation from the HSI itself through a formulation of model-driven low-rank subspace representation and learns the deep prior by a data-driven self-supervised deep learning scheme. Specifically, we firstly develop a model-driven low-rank subspace representation to decompose the HSI as the product of an orthogonal basis and a spatial representation coefficient, then propose a data-driven deep guided spatial-attention network (called DGSAN ) to adaptively reconstruct the implicit spatial feature of HSI by learning the deep coefficient prior (DCP), and finally embed these implicit priors into an iterative optimization framework through a self-supervised training way without requiring any training data. Thus, the proposed method shall enhance the reconstruction accuracy, generalization ability, and interpretability. Extensive experiments on several datasets and imaging systems validate the superiority of our method. The source code and data of this article will be made publicly available at https://github.com/ChenYong1993/LRSDN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
rynchee完成签到 ,获得积分0
4秒前
怕黑面包完成签到 ,获得积分10
4秒前
4秒前
Emma完成签到 ,获得积分10
6秒前
yiner520完成签到,获得积分10
8秒前
胖Q发布了新的文献求助10
8秒前
X先生完成签到 ,获得积分10
9秒前
活泼的阁发布了新的文献求助10
12秒前
FFFFFF完成签到 ,获得积分10
13秒前
Jasper应助胖Q采纳,获得10
16秒前
江河湖海发布了新的文献求助10
17秒前
20秒前
dong应助清秀的白昼采纳,获得10
20秒前
赘婿应助焕颜采纳,获得10
23秒前
24秒前
XXH发布了新的文献求助10
24秒前
农夫发布了新的文献求助10
30秒前
30秒前
30秒前
澄子完成签到 ,获得积分10
31秒前
缓慢的凝云完成签到,获得积分10
32秒前
33秒前
33秒前
一个有点长的序完成签到 ,获得积分10
34秒前
ljy阿完成签到 ,获得积分10
35秒前
8531发布了新的文献求助10
35秒前
36秒前
36秒前
36秒前
SiO2完成签到 ,获得积分10
38秒前
苏打完成签到 ,获得积分10
38秒前
nanfang完成签到 ,获得积分10
40秒前
Manbo发布了新的文献求助10
40秒前
阿秋秋秋发布了新的文献求助10
42秒前
44秒前
Manbo完成签到,获得积分10
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024