Hyperspectral Compressive Snapshot Reconstruction via Coupled Low-Rank Subspace Representation and Self-Supervised Deep Network

高光谱成像 快照(计算机存储) 子空间拓扑 人工智能 模式识别(心理学) 计算机科学 计算机视觉 数学 操作系统
作者
Yong Chen,Wenzhen Lai,Wei He,Xi-Le Zhao,Wei He
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 926-941 被引量:10
标识
DOI:10.1109/tip.2024.3354127
摘要

Coded aperture snapshot spectral imaging (CASSI) is an important technique for capturing three-dimensional (3D) hyperspectral images (HSIs), and involves an inverse problem of reconstructing the 3D HSI from its corresponding coded 2D measurements. Existing model-based and learning-based methods either could not explore the implicit feature of different HSIs or require a large amount of paired data for training, resulting in low reconstruction accuracy or poor generalization performance as well as interpretability. To remedy these deficiencies, this paper proposes a novel HSI reconstruction method, which exploits the global spectral correlation from the HSI itself through a formulation of model-driven low-rank subspace representation and learns the deep prior by a data-driven self-supervised deep learning scheme. Specifically, we firstly develop a model-driven low-rank subspace representation to decompose the HSI as the product of an orthogonal basis and a spatial representation coefficient, then propose a data-driven deep guided spatial-attention network (called DGSAN ) to adaptively reconstruct the implicit spatial feature of HSI by learning the deep coefficient prior (DCP), and finally embed these implicit priors into an iterative optimization framework through a self-supervised training way without requiring any training data. Thus, the proposed method shall enhance the reconstruction accuracy, generalization ability, and interpretability. Extensive experiments on several datasets and imaging systems validate the superiority of our method. The source code and data of this article will be made publicly available at https://github.com/ChenYong1993/LRSDN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KD发布了新的文献求助10
刚刚
1秒前
YUE完成签到,获得积分10
1秒前
lyn完成签到,获得积分10
1秒前
2秒前
4秒前
天天快乐应助牧友桃采纳,获得10
4秒前
魔幻灯泡完成签到,获得积分10
5秒前
薰硝壤应助科研顺荔采纳,获得10
6秒前
7秒前
过时的画板完成签到 ,获得积分10
7秒前
白水完成签到,获得积分10
8秒前
胡茶茶发布了新的文献求助10
9秒前
ysyzxs完成签到,获得积分10
9秒前
cessy完成签到,获得积分10
10秒前
11秒前
14秒前
无私文博完成签到,获得积分10
14秒前
YUE发布了新的文献求助20
15秒前
爆米花应助张朝程采纳,获得10
17秒前
超级柜子发布了新的文献求助10
18秒前
zyt发布了新的文献求助30
19秒前
19秒前
20秒前
nan发布了新的文献求助10
20秒前
21秒前
22秒前
所所应助胡茶茶采纳,获得10
22秒前
Yuxuan发布了新的文献求助30
24秒前
Akim应助ber采纳,获得10
25秒前
25秒前
qqq发布了新的文献求助10
27秒前
28秒前
大鱼发布了新的文献求助10
28秒前
西柚发布了新的文献求助10
29秒前
30秒前
32秒前
共享精神应助给桃子采纳,获得10
33秒前
zhanks完成签到,获得积分10
33秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055401
求助须知:如何正确求助?哪些是违规求助? 2712227
关于积分的说明 7430195
捐赠科研通 2357037
什么是DOI,文献DOI怎么找? 1248528
科研通“疑难数据库(出版商)”最低求助积分说明 606737
版权声明 596093