Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning

作物产量 极限学习机 气候变化 产量(工程) 特征选择 气候模式 环境科学 数学 机器学习 农业工程 农学 计算机科学 人工神经网络 工程类 生态学 生物 冶金 材料科学
作者
Huizi Bai,Dengpan Xiao,Jianzhao Tang,De Li Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108651-108651 被引量:2
标识
DOI:10.1016/j.compag.2024.108651
摘要

Assessing the impact of climate extremes on crop production is an important prerequisite for exploring agronomic practices to deal with changing climate. Process-based crop models are effective tools to assess the effect of climate change on crop yield, but cannot accurately express the impact of extreme climate events on crop yield. In this study, we developed a series of hybrid models by incorporating the APSIM model outputs and the most informative growth stage-specific extreme climate indices (ECIs) selected by two feature selection techniques (stepwise regression, SR and genetic algorithm, GA) into two machine learning algorithms (random forest, RF and light gradient boosting machine, LGBM) to evaluate impacts of climate extremes on wheat yields in the North China Plain (NCP). The results showed that the RF model outperformed the LGBM model in estimating wheat yield regardless of input variables. Applying feature selection to two machine learning algorithms can greatly reduce computational cost without significantly affecting model accuracy. The APSIM+RF-GA hybrid model was the optimal model for estimating wheat yield with explained 93 % of the observed yield variation and the accuracy of the model is improved by 33 % compared with the APSIM model alone. Extreme low temperature events before flowering and extreme high temperature events after flowering are the main extreme climate events causing the loss of wheat yield. In addition, we evaluated the impact of future climate change on wheat yield using the APSIM+RF-GA hybrid model and the APSIM model, respectively. Yields projected using a single APSIM model increased at all stations but yields projected using APSIM+RF-GA model decreased at 12.5–28.1 % of stations in the NCP under future climate scenarios. Compared to the APSIM+RF hybrid model, the future yield projected using single APSIM model might be overestimated by 12.7–19.2 % because of underestimating the yield loss caused by climate extremes. The increase of heat stress after flowering and frost stress during floral initiation to flowering were the main factors for future yield loss. Using the machine learning algorithm to make an external modification to the outputs of the APSIM model could improve the accuracy of yield estimation under extreme climate conditions and the method is more suitable for projecting future crop yield. This study is conducive to developing adaptation strategies to alleviate the negative impacts of future climate extremes on crop production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的咖啡完成签到,获得积分10
1秒前
六桃发布了新的文献求助10
1秒前
zorro3574发布了新的文献求助10
2秒前
里脊鱼关注了科研通微信公众号
2秒前
SciGPT应助AU采纳,获得10
3秒前
云_123发布了新的文献求助10
4秒前
明亮白凝完成签到,获得积分10
4秒前
小雅完成签到,获得积分10
5秒前
Jasper应助安小象采纳,获得10
5秒前
果蝇宝宝发布了新的文献求助10
5秒前
亿万男人的初恋完成签到,获得积分10
8秒前
8秒前
木偶发布了新的文献求助10
9秒前
务实曲奇发布了新的文献求助10
10秒前
清脆的如凡完成签到 ,获得积分10
10秒前
大模型应助无情的聋五采纳,获得10
10秒前
11秒前
科研通AI2S应助化石吟采纳,获得10
11秒前
帅气的马里奥完成签到 ,获得积分10
12秒前
善学以致用应助FG采纳,获得10
14秒前
共享精神应助zhangyannini采纳,获得10
15秒前
Jemezs发布了新的文献求助10
15秒前
17秒前
免疫与代谢研究完成签到,获得积分10
18秒前
19秒前
任性的皮皮虾完成签到,获得积分10
19秒前
ll完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
FG发布了新的文献求助10
23秒前
李二二完成签到,获得积分10
23秒前
云_123完成签到,获得积分10
24秒前
ll发布了新的文献求助20
25秒前
轩仔发布了新的文献求助10
26秒前
王77完成签到,获得积分10
26秒前
小陈子完成签到,获得积分10
26秒前
李二二发布了新的文献求助10
27秒前
27秒前
yyw完成签到,获得积分10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141416
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802733
捐赠科研通 2448629
什么是DOI,文献DOI怎么找? 1302677
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237