Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning

作物产量 极限学习机 气候变化 产量(工程) 特征选择 气候模式 环境科学 数学 机器学习 农业工程 农学 计算机科学 人工神经网络 工程类 生态学 材料科学 冶金 生物
作者
Huizi Bai,Dengpan Xiao,Jianzhao Tang,De Li Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108651-108651 被引量:14
标识
DOI:10.1016/j.compag.2024.108651
摘要

Assessing the impact of climate extremes on crop production is an important prerequisite for exploring agronomic practices to deal with changing climate. Process-based crop models are effective tools to assess the effect of climate change on crop yield, but cannot accurately express the impact of extreme climate events on crop yield. In this study, we developed a series of hybrid models by incorporating the APSIM model outputs and the most informative growth stage-specific extreme climate indices (ECIs) selected by two feature selection techniques (stepwise regression, SR and genetic algorithm, GA) into two machine learning algorithms (random forest, RF and light gradient boosting machine, LGBM) to evaluate impacts of climate extremes on wheat yields in the North China Plain (NCP). The results showed that the RF model outperformed the LGBM model in estimating wheat yield regardless of input variables. Applying feature selection to two machine learning algorithms can greatly reduce computational cost without significantly affecting model accuracy. The APSIM+RF-GA hybrid model was the optimal model for estimating wheat yield with explained 93 % of the observed yield variation and the accuracy of the model is improved by 33 % compared with the APSIM model alone. Extreme low temperature events before flowering and extreme high temperature events after flowering are the main extreme climate events causing the loss of wheat yield. In addition, we evaluated the impact of future climate change on wheat yield using the APSIM+RF-GA hybrid model and the APSIM model, respectively. Yields projected using a single APSIM model increased at all stations but yields projected using APSIM+RF-GA model decreased at 12.5–28.1 % of stations in the NCP under future climate scenarios. Compared to the APSIM+RF hybrid model, the future yield projected using single APSIM model might be overestimated by 12.7–19.2 % because of underestimating the yield loss caused by climate extremes. The increase of heat stress after flowering and frost stress during floral initiation to flowering were the main factors for future yield loss. Using the machine learning algorithm to make an external modification to the outputs of the APSIM model could improve the accuracy of yield estimation under extreme climate conditions and the method is more suitable for projecting future crop yield. This study is conducive to developing adaptation strategies to alleviate the negative impacts of future climate extremes on crop production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今夜不设防完成签到,获得积分10
刚刚
李健应助木子采纳,获得10
1秒前
爆米花发布了新的文献求助10
1秒前
1秒前
1秒前
可靠的老鼠完成签到,获得积分10
2秒前
落寞依珊应助master-f采纳,获得10
2秒前
wbh发布了新的文献求助10
3秒前
田様应助hu970采纳,获得10
3秒前
科研通AI2S应助钟是一梦采纳,获得10
3秒前
zzz完成签到,获得积分20
4秒前
好玩和有趣完成签到,获得积分10
4秒前
脂蛋白抗原完成签到,获得积分10
4秒前
4秒前
4秒前
虫虫完成签到,获得积分10
4秒前
5秒前
5秒前
喜悦的向珊完成签到,获得积分10
5秒前
5秒前
科研狗发布了新的文献求助10
5秒前
清爽绿凝发布了新的文献求助10
5秒前
5秒前
大个应助佰斯特威采纳,获得10
6秒前
JingP完成签到,获得积分10
7秒前
赘婿应助yuyu采纳,获得10
7秒前
蔡翌文完成签到 ,获得积分10
7秒前
crescendo完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
plumcute完成签到,获得积分10
8秒前
cybbbbbb发布了新的文献求助10
9秒前
名丿完成签到,获得积分10
9秒前
9秒前
网上飞完成签到,获得积分10
9秒前
小香草发布了新的文献求助10
9秒前
xiaoziyi666发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740