Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning

作物产量 极限学习机 气候变化 产量(工程) 特征选择 气候模式 环境科学 数学 机器学习 农业工程 农学 计算机科学 人工神经网络 工程类 生态学 生物 冶金 材料科学
作者
Huizi Bai,Dengpan Xiao,Jianzhao Tang,De Li Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108651-108651 被引量:14
标识
DOI:10.1016/j.compag.2024.108651
摘要

Assessing the impact of climate extremes on crop production is an important prerequisite for exploring agronomic practices to deal with changing climate. Process-based crop models are effective tools to assess the effect of climate change on crop yield, but cannot accurately express the impact of extreme climate events on crop yield. In this study, we developed a series of hybrid models by incorporating the APSIM model outputs and the most informative growth stage-specific extreme climate indices (ECIs) selected by two feature selection techniques (stepwise regression, SR and genetic algorithm, GA) into two machine learning algorithms (random forest, RF and light gradient boosting machine, LGBM) to evaluate impacts of climate extremes on wheat yields in the North China Plain (NCP). The results showed that the RF model outperformed the LGBM model in estimating wheat yield regardless of input variables. Applying feature selection to two machine learning algorithms can greatly reduce computational cost without significantly affecting model accuracy. The APSIM+RF-GA hybrid model was the optimal model for estimating wheat yield with explained 93 % of the observed yield variation and the accuracy of the model is improved by 33 % compared with the APSIM model alone. Extreme low temperature events before flowering and extreme high temperature events after flowering are the main extreme climate events causing the loss of wheat yield. In addition, we evaluated the impact of future climate change on wheat yield using the APSIM+RF-GA hybrid model and the APSIM model, respectively. Yields projected using a single APSIM model increased at all stations but yields projected using APSIM+RF-GA model decreased at 12.5–28.1 % of stations in the NCP under future climate scenarios. Compared to the APSIM+RF hybrid model, the future yield projected using single APSIM model might be overestimated by 12.7–19.2 % because of underestimating the yield loss caused by climate extremes. The increase of heat stress after flowering and frost stress during floral initiation to flowering were the main factors for future yield loss. Using the machine learning algorithm to make an external modification to the outputs of the APSIM model could improve the accuracy of yield estimation under extreme climate conditions and the method is more suitable for projecting future crop yield. This study is conducive to developing adaptation strategies to alleviate the negative impacts of future climate extremes on crop production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
banban完成签到,获得积分10
刚刚
刚刚
刚刚
寒冷的元芹完成签到,获得积分10
1秒前
飞机发布了新的文献求助10
1秒前
1秒前
李红莲发布了新的文献求助50
1秒前
1秒前
zzz发布了新的文献求助10
1秒前
科研通AI2S应助开心的留兰采纳,获得10
1秒前
1秒前
2秒前
科研通AI6应助22年春_采纳,获得10
2秒前
我是老大应助WXY采纳,获得10
3秒前
4秒前
4秒前
hometown发布了新的文献求助10
4秒前
Dado发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
wzyshzu发布了新的文献求助10
4秒前
4秒前
燕天与发布了新的文献求助10
5秒前
5秒前
苹果音响完成签到,获得积分20
6秒前
小C完成签到,获得积分10
6秒前
准了完成签到 ,获得积分10
6秒前
火星完成签到 ,获得积分10
7秒前
7秒前
JW发布了新的文献求助10
7秒前
7秒前
Felicity完成签到,获得积分20
7秒前
枫树狐狸发布了新的文献求助10
7秒前
liangzhao发布了新的文献求助30
7秒前
Jelinna完成签到,获得积分10
8秒前
8秒前
顺心的大侠完成签到,获得积分10
8秒前
Ava应助hhwoyebudong采纳,获得10
8秒前
斯文败类应助健忘的妙松采纳,获得30
9秒前
郭生发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710