亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning

作物产量 极限学习机 气候变化 产量(工程) 特征选择 气候模式 环境科学 数学 机器学习 农业工程 农学 计算机科学 人工神经网络 工程类 生态学 生物 冶金 材料科学
作者
Huizi Bai,Dengpan Xiao,Jianzhao Tang,De Li Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108651-108651 被引量:14
标识
DOI:10.1016/j.compag.2024.108651
摘要

Assessing the impact of climate extremes on crop production is an important prerequisite for exploring agronomic practices to deal with changing climate. Process-based crop models are effective tools to assess the effect of climate change on crop yield, but cannot accurately express the impact of extreme climate events on crop yield. In this study, we developed a series of hybrid models by incorporating the APSIM model outputs and the most informative growth stage-specific extreme climate indices (ECIs) selected by two feature selection techniques (stepwise regression, SR and genetic algorithm, GA) into two machine learning algorithms (random forest, RF and light gradient boosting machine, LGBM) to evaluate impacts of climate extremes on wheat yields in the North China Plain (NCP). The results showed that the RF model outperformed the LGBM model in estimating wheat yield regardless of input variables. Applying feature selection to two machine learning algorithms can greatly reduce computational cost without significantly affecting model accuracy. The APSIM+RF-GA hybrid model was the optimal model for estimating wheat yield with explained 93 % of the observed yield variation and the accuracy of the model is improved by 33 % compared with the APSIM model alone. Extreme low temperature events before flowering and extreme high temperature events after flowering are the main extreme climate events causing the loss of wheat yield. In addition, we evaluated the impact of future climate change on wheat yield using the APSIM+RF-GA hybrid model and the APSIM model, respectively. Yields projected using a single APSIM model increased at all stations but yields projected using APSIM+RF-GA model decreased at 12.5–28.1 % of stations in the NCP under future climate scenarios. Compared to the APSIM+RF hybrid model, the future yield projected using single APSIM model might be overestimated by 12.7–19.2 % because of underestimating the yield loss caused by climate extremes. The increase of heat stress after flowering and frost stress during floral initiation to flowering were the main factors for future yield loss. Using the machine learning algorithm to make an external modification to the outputs of the APSIM model could improve the accuracy of yield estimation under extreme climate conditions and the method is more suitable for projecting future crop yield. This study is conducive to developing adaptation strategies to alleviate the negative impacts of future climate extremes on crop production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助喜滋滋采纳,获得10
26秒前
璨澄完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
1分钟前
喜滋滋发布了新的文献求助10
1分钟前
1分钟前
DrN发布了新的文献求助10
1分钟前
淡定成风完成签到,获得积分10
1分钟前
隐形曼青应助喜滋滋采纳,获得10
1分钟前
结实智宸完成签到,获得积分10
1分钟前
科研通AI5应助tzy采纳,获得10
2分钟前
2分钟前
tzy发布了新的文献求助10
2分钟前
tzy完成签到,获得积分10
2分钟前
wjx完成签到 ,获得积分10
3分钟前
幽默赛君完成签到 ,获得积分10
3分钟前
阔达棉花糖完成签到 ,获得积分10
3分钟前
顺利豆豆完成签到,获得积分10
3分钟前
zxcvvbb1001完成签到 ,获得积分10
3分钟前
3分钟前
5分钟前
5分钟前
喜滋滋发布了新的文献求助10
5分钟前
Elena发布了新的文献求助10
5分钟前
Ocean完成签到,获得积分10
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
丘比特应助Elena采纳,获得10
5分钟前
科研通AI2S应助Raye采纳,获得10
5分钟前
李剑鸿发布了新的文献求助200
5分钟前
5分钟前
顺利豆豆发布了新的文献求助10
5分钟前
Raye发布了新的文献求助10
5分钟前
Elena完成签到,获得积分10
5分钟前
5分钟前
黄玉发布了新的文献求助10
5分钟前
Tayzon完成签到 ,获得积分10
6分钟前
个性画笔发布了新的文献求助60
6分钟前
nickel完成签到,获得积分10
6分钟前
Hello应助黄玉采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869970
求助须知:如何正确求助?哪些是违规求助? 4160714
关于积分的说明 12902077
捐赠科研通 3915760
什么是DOI,文献DOI怎么找? 2150488
邀请新用户注册赠送积分活动 1168870
关于科研通互助平台的介绍 1071972