Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning

作物产量 极限学习机 气候变化 产量(工程) 特征选择 气候模式 环境科学 数学 机器学习 农业工程 农学 计算机科学 人工神经网络 工程类 生态学 生物 冶金 材料科学
作者
Huizi Bai,Dengpan Xiao,Jianzhao Tang,De Li Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108651-108651 被引量:14
标识
DOI:10.1016/j.compag.2024.108651
摘要

Assessing the impact of climate extremes on crop production is an important prerequisite for exploring agronomic practices to deal with changing climate. Process-based crop models are effective tools to assess the effect of climate change on crop yield, but cannot accurately express the impact of extreme climate events on crop yield. In this study, we developed a series of hybrid models by incorporating the APSIM model outputs and the most informative growth stage-specific extreme climate indices (ECIs) selected by two feature selection techniques (stepwise regression, SR and genetic algorithm, GA) into two machine learning algorithms (random forest, RF and light gradient boosting machine, LGBM) to evaluate impacts of climate extremes on wheat yields in the North China Plain (NCP). The results showed that the RF model outperformed the LGBM model in estimating wheat yield regardless of input variables. Applying feature selection to two machine learning algorithms can greatly reduce computational cost without significantly affecting model accuracy. The APSIM+RF-GA hybrid model was the optimal model for estimating wheat yield with explained 93 % of the observed yield variation and the accuracy of the model is improved by 33 % compared with the APSIM model alone. Extreme low temperature events before flowering and extreme high temperature events after flowering are the main extreme climate events causing the loss of wheat yield. In addition, we evaluated the impact of future climate change on wheat yield using the APSIM+RF-GA hybrid model and the APSIM model, respectively. Yields projected using a single APSIM model increased at all stations but yields projected using APSIM+RF-GA model decreased at 12.5–28.1 % of stations in the NCP under future climate scenarios. Compared to the APSIM+RF hybrid model, the future yield projected using single APSIM model might be overestimated by 12.7–19.2 % because of underestimating the yield loss caused by climate extremes. The increase of heat stress after flowering and frost stress during floral initiation to flowering were the main factors for future yield loss. Using the machine learning algorithm to make an external modification to the outputs of the APSIM model could improve the accuracy of yield estimation under extreme climate conditions and the method is more suitable for projecting future crop yield. This study is conducive to developing adaptation strategies to alleviate the negative impacts of future climate extremes on crop production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强似狮完成签到,获得积分10
1秒前
1秒前
1秒前
沧海青州发布了新的文献求助10
2秒前
完犊子完成签到,获得积分20
2秒前
dumeng完成签到,获得积分10
3秒前
wnx001111发布了新的文献求助10
3秒前
jchen完成签到,获得积分10
4秒前
月关发布了新的文献求助20
5秒前
6秒前
lvyan发布了新的文献求助10
6秒前
苗条香发布了新的文献求助10
6秒前
幸福诗槐完成签到,获得积分10
7秒前
哈瓜豆完成签到,获得积分10
8秒前
吃土豆的番茄完成签到,获得积分10
8秒前
airwing发布了新的文献求助10
8秒前
9秒前
euphoria完成签到,获得积分10
10秒前
10秒前
10秒前
ky发布了新的文献求助10
10秒前
10秒前
Bestchu完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Bestchu关注了科研通微信公众号
13秒前
感性的剑愁完成签到,获得积分10
14秒前
14秒前
14秒前
Ace发布了新的文献求助10
14秒前
15秒前
17秒前
乐乐应助hehsk采纳,获得10
17秒前
17秒前
脑洞疼应助LBJ采纳,获得10
17秒前
哇哇发布了新的文献求助30
17秒前
Snoopy发布了新的文献求助10
17秒前
浮游应助hkh采纳,获得10
18秒前
18秒前
ROBO应助hkh采纳,获得10
18秒前
Loki应助hkh采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072862
求助须知:如何正确求助?哪些是违规求助? 4293130
关于积分的说明 13377256
捐赠科研通 4114419
什么是DOI,文献DOI怎么找? 2252964
邀请新用户注册赠送积分活动 1257744
关于科研通互助平台的介绍 1190631