Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning

作物产量 极限学习机 气候变化 产量(工程) 特征选择 气候模式 环境科学 数学 机器学习 农业工程 农学 计算机科学 人工神经网络 工程类 生态学 生物 冶金 材料科学
作者
Huizi Bai,Dengpan Xiao,Jianzhao Tang,De Li Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108651-108651 被引量:14
标识
DOI:10.1016/j.compag.2024.108651
摘要

Assessing the impact of climate extremes on crop production is an important prerequisite for exploring agronomic practices to deal with changing climate. Process-based crop models are effective tools to assess the effect of climate change on crop yield, but cannot accurately express the impact of extreme climate events on crop yield. In this study, we developed a series of hybrid models by incorporating the APSIM model outputs and the most informative growth stage-specific extreme climate indices (ECIs) selected by two feature selection techniques (stepwise regression, SR and genetic algorithm, GA) into two machine learning algorithms (random forest, RF and light gradient boosting machine, LGBM) to evaluate impacts of climate extremes on wheat yields in the North China Plain (NCP). The results showed that the RF model outperformed the LGBM model in estimating wheat yield regardless of input variables. Applying feature selection to two machine learning algorithms can greatly reduce computational cost without significantly affecting model accuracy. The APSIM+RF-GA hybrid model was the optimal model for estimating wheat yield with explained 93 % of the observed yield variation and the accuracy of the model is improved by 33 % compared with the APSIM model alone. Extreme low temperature events before flowering and extreme high temperature events after flowering are the main extreme climate events causing the loss of wheat yield. In addition, we evaluated the impact of future climate change on wheat yield using the APSIM+RF-GA hybrid model and the APSIM model, respectively. Yields projected using a single APSIM model increased at all stations but yields projected using APSIM+RF-GA model decreased at 12.5–28.1 % of stations in the NCP under future climate scenarios. Compared to the APSIM+RF hybrid model, the future yield projected using single APSIM model might be overestimated by 12.7–19.2 % because of underestimating the yield loss caused by climate extremes. The increase of heat stress after flowering and frost stress during floral initiation to flowering were the main factors for future yield loss. Using the machine learning algorithm to make an external modification to the outputs of the APSIM model could improve the accuracy of yield estimation under extreme climate conditions and the method is more suitable for projecting future crop yield. This study is conducive to developing adaptation strategies to alleviate the negative impacts of future climate extremes on crop production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助刘歌采纳,获得10
1秒前
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
YY发布了新的文献求助10
4秒前
小明应助科研通管家采纳,获得10
4秒前
CAOHOU应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
全村最美发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
SUE发布了新的文献求助10
7秒前
Sano关注了科研通微信公众号
8秒前
8秒前
XCL应助甜蜜的迎梅采纳,获得10
9秒前
奋斗的怀曼完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
汉堡包应助lca507采纳,获得10
13秒前
梦梦发布了新的文献求助10
13秒前
14秒前
orixero应助zz采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538862
求助须知:如何正确求助?哪些是违规求助? 3973139
关于积分的说明 12307992
捐赠科研通 3639931
什么是DOI,文献DOI怎么找? 2004247
邀请新用户注册赠送积分活动 1039622
科研通“疑难数据库(出版商)”最低求助积分说明 928862