反常扩散
统计物理学
随机游动
连续时间随机游动
扩散
布朗运动
均方位移
指数
概率密度函数
跳跃
莱维航班
幂律
高斯分布
指数函数
流离失所(心理学)
功能(生物学)
物理
数学
数学分析
计算机科学
统计
创新扩散
热力学
量子力学
心理学
知识管理
心理治疗师
分子动力学
进化生物学
生物
语言学
哲学
作者
Xiao Luo,Jing-Dong Bao,Wen-Yue Fan
出处
期刊:Physical review
日期:2024-01-22
卷期号:109 (1)
被引量:3
标识
DOI:10.1103/physreve.109.014130
摘要
Anomalous diffusive behaviors are observed in highly inhomogeneous but relatively stable environments such as intracellular media and are increasingly attracting attention. In this paper we develop a coupled continuous-time random walk model in which the waiting time is power-law coupled with the local environmental diffusion coefficient. We provide two forms of the waiting time density, namely, a heavy-tailed density and an exponential density. For different waiting time densities, anomalous diffusions with the diffusion exponent between 0 and 2 and Brownian yet non-Gaussian diffusion can be realized within the present model. The diffusive behaviors are analyzed and discussed by deriving the mean-squared displacement and probability density function. In addition we derive the effective jump length density corresponding to the decoupled form to help distinguish the diffusion types. Our model unifies two kinds of anomalous diffusive behavior with different characteristics in the same inhomogeneous environment into a theoretical framework. The model interprets the random motion of particles in a complex inhomogeneous environment and reproduces the experimental results of different biological and physical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI