亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Realizing long-cycling solid-state Li–CO2 batteries using Zn-doped LATP ceramic electrolytes

过电位 材料科学 电解质 阳极 化学工程 陶瓷 电导率 离子电导率 法拉第效率 纳米技术 无机化学 电极 复合材料 化学 电化学 工程类 物理化学
作者
Qian‐Cheng Zhu,Jie Ma,Jiahui Huang,De-Yu Mao,Kai‐Xue Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:482: 148977-148977 被引量:37
标识
DOI:10.1016/j.cej.2024.148977
摘要

Lithium–carbon dioxide (Li–CO2) batteries with high theoretical energy density and carbon dioxide conversion ability are considered as the next generation of energy storage devices for solving electric vehicle range anxiety and reducing the greenhouse effect. However, the volatilization and leakage of traditional liquid organic electrolytes and the short circuit caused by the penetration of the lithium dendrite anode induce serious cycle and safety problems, hindering the commercial application of Li–CO2 batteries. Herein, a Zn-doped Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid-state ceramic electrolyte stabilized in CO2 was designed and prepared. The additive Zn2+ ions make the crystal structure of the electrolyte denser with strong mechanical properties, providing an optimized network channel for Li+ ions transmission and further improving its ionic conductivity at room temperature. The optimized Zn-doped LATP exhibited an ionic conductivity of 2.45 × 10-3 S cm−1, much higher than that of LATP (2.67 × 10-4 S cm−1). The assembled Li–CO2 battery provides a high discharge capacity of 16,585 mAh/g and more than 180 stable cycles with charge/discharge overpotential less than 1.4 V. Due to the Zn-doped structure, the reduction effect of Ti4+ ions in LATP contact with Li was proved to be effectively suppressed. This doping strategy provides a feasible method for achieving high-performance solid-state Li–CO2 batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang123笛发布了新的文献求助10
3秒前
星辰大海应助ttssooe采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
在水一方应助科研通管家采纳,获得30
10秒前
10秒前
zhang123笛完成签到,获得积分10
15秒前
26秒前
钙钛矿电池发布了新的文献求助200
27秒前
27秒前
无花果应助一颗苹果采纳,获得10
31秒前
1900发布了新的文献求助10
32秒前
32秒前
空蝉发布了新的文献求助10
33秒前
33秒前
36秒前
科研通AI6应助空蝉采纳,获得10
42秒前
ivy发布了新的文献求助10
43秒前
Gryff完成签到 ,获得积分10
43秒前
1900完成签到,获得积分20
46秒前
47秒前
田様应助lxb采纳,获得10
51秒前
二狗完成签到 ,获得积分10
54秒前
光合作用完成签到,获得积分10
59秒前
王令完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
王令发布了新的文献求助10
1分钟前
彭于晏应助jamaisvu采纳,获得30
1分钟前
李爱国应助jamaisvu采纳,获得30
1分钟前
1分钟前
空空伊完成签到,获得积分10
1分钟前
1分钟前
Weiyu完成签到 ,获得积分10
1分钟前
1分钟前
silence完成签到 ,获得积分10
1分钟前
1分钟前
伯云完成签到,获得积分10
2分钟前
所所应助无语的寄文采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528934
求助须知:如何正确求助?哪些是违规求助? 4618236
关于积分的说明 14562294
捐赠科研通 4557142
什么是DOI,文献DOI怎么找? 2497360
邀请新用户注册赠送积分活动 1477590
关于科研通互助平台的介绍 1448890