Automating Poultry Disease Detection using Deep Learning

深度学习 卷积神经网络 人工智能 计算机科学 规范化(社会学) 机器学习 家禽养殖 模式识别(心理学) 兽医学 医学 社会学 人类学
作者
S. Iwin Thanakumar Joseph
出处
期刊:Journal of Soft Computing Paradigm [Inventive Research Organization]
卷期号:5 (4): 378-389
标识
DOI:10.36548/jscp.2023.4.004
摘要

Poultry farming plays a vital role in global food production but the emerging threat of diseases poses significant challenges to both sustainability and food security. In particular, this research study investigates the integration of deep learning techniques to automate the detection of four major poultry diseases—Avian Influenza, Coccidiosis, Newcastle Disease, and Gumboro Disease—from faecal samples. The proposed methodology involves collecting diverse faecal samples, pre-processing the data, and developing a Convolutional Neural Network (CNN) architecture. The CNN layered architecture is designed to extract hierarchical features and learn complex patterns associated with each disease. Through the integration of activation function, Rectified Linear Units (ReLU), the network incorporates non-linearity, enhancing its ability to detect the disease-related features. The faecal samples undergo image enhancement, normalization, and segmentation to ensure suitability for the deep learning model. The performance of the proposed model is evaluated using the performance metrics and achieved an overall accuracy of 98.82% on the training set, 93.22% on the testing set, and 96.65% on the validation set., precision, recall and F1-Score. This research study contributes to the advancement of automated disease detection, offering a potential solution to mitigate the impact of poultry diseases and enhance overall food safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lirong888完成签到,获得积分10
1秒前
QC完成签到,获得积分10
1秒前
hh完成签到 ,获得积分10
1秒前
3秒前
ffffwj2024完成签到,获得积分10
3秒前
陈昊完成签到,获得积分10
5秒前
聪明帅哥完成签到,获得积分10
6秒前
小小完成签到,获得积分10
8秒前
天天快乐应助zhongxuejie采纳,获得10
10秒前
眰恦完成签到 ,获得积分10
11秒前
12秒前
12秒前
14秒前
14秒前
香蕉觅云应助zcy采纳,获得10
15秒前
H_123完成签到 ,获得积分10
15秒前
18秒前
Ren发布了新的文献求助10
19秒前
orixero应助KYpaopao采纳,获得10
19秒前
今后应助黄哈哈采纳,获得10
19秒前
自觉山柏完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
CipherSage应助平常的紫蓝采纳,获得10
23秒前
24秒前
xixi很困完成签到 ,获得积分10
25秒前
27秒前
zcy发布了新的文献求助10
27秒前
27秒前
香蕉觅云应助云岫采纳,获得10
27秒前
27秒前
28秒前
全若之发布了新的文献求助10
29秒前
爆米花应助谷大喵唔采纳,获得10
30秒前
小马甲应助旺仔Mario采纳,获得10
30秒前
思源应助乘风采纳,获得10
30秒前
PT177245发布了新的文献求助10
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028