Optimal carbon quota allocation for a capital-constrained e-commerce supply chain under the carbon rights buyback policy

标杆管理 供应链 水准点(测量) 温室气体 环境经济学 首都(建筑) 碳纤维 微观经济学 业务 经济 产业组织 计算机科学 营销 历史 生态学 大地测量学 考古 算法 复合数 生物 地理
作者
Yu-Yan Wang,Tingting Yu,Qiuchen Wu,T.C.E. Cheng,Sun Yulin,Yu-Yan Wang,Tingting Yu,Qiuchen Wu,T.C.E. Cheng,Sun Yulin
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:188: 109902-109902 被引量:18
标识
DOI:10.1016/j.cie.2024.109902
摘要

This paper examines the optimal choices of carbon quota allocation methods for members of a capital-constrained e-commerce supply chain that obtains financing through carbon rights buyback. Considering two carbon quota allocation methods, namely the grandfathering system and the benchmarking system, this paper constructs and solves a game model with two cycles in which an e-commerce platform dominates a manufacturer that produces ordinary products and low-carbon products in the two cycles, respectively, examines the impacts of the carbon emissions reduction coefficient, carbon emissions benchmark coefficient, carbon price, and carbon saving on e-commerce supply chain decisions, derives the optimal carbon quota allocation method for each supply chain member under different carbon savings, and finally conducts numerical studies to verify the analytical findings. The study shows that: (1) The grandfathering system is more suitable for manufacturers with low carbon savings, and the benchmarking system is more suitable for manufacturers with high carbon savings. (2) The supply chain system and members prefer different quota allocation methods under different conditions. The e-commerce platform prefers the benchmarking system when the carbon emissions benchmark coefficient is high; otherwise, it chooses the grandfathering system. The manufacturer and the e-commerce supply chain prefer the benchmarking system when the carbon saving is high; otherwise, they prefer the grandfathering system. (3) The grandfathering carbon quota allocation method can more effectively facilitate capital financing for capital-constrained manufacturers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
1秒前
xiaoru发布了新的文献求助10
1秒前
吴彦祖发布了新的文献求助10
1秒前
fjx发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
4秒前
Jasper应助小范采纳,获得10
4秒前
赘婿应助hyPang采纳,获得10
4秒前
5秒前
渔夫完成签到,获得积分10
6秒前
7秒前
7秒前
不安的大米完成签到,获得积分10
7秒前
晚风发布了新的文献求助10
7秒前
8秒前
阿盖发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
所所应助钟昊采纳,获得10
9秒前
9秒前
leetaisan完成签到,获得积分10
10秒前
11秒前
12秒前
田様应助兴奋烤鸡采纳,获得10
12秒前
12秒前
打打应助huangyi采纳,获得10
12秒前
12秒前
槐夏发布了新的文献求助10
13秒前
华仔应助山野随千里采纳,获得10
13秒前
结实的栾完成签到,获得积分10
13秒前
Ava应助z104采纳,获得10
14秒前
上官若男应助syx采纳,获得20
14秒前
小范发布了新的文献求助10
15秒前
16秒前
17秒前
贰壹发布了新的文献求助30
18秒前
18秒前
pax发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605