Optimal domain adaptive object detection with self-training and adversarial-based approach for construction site monitoring

领域(数学分析) 对象(语法) 计算机科学 适应(眼睛) 目标检测 人工智能 域适应 机器学习 对抗制 培训(气象学) 数据挖掘 模式识别(心理学) 分类器(UML) 光学 物理 数学分析 气象学 数学
作者
Hyung‐Soo Kim,Jaehwan Seong,Hyung‐Jo Jung
出处
期刊:Automation in Construction [Elsevier]
卷期号:158: 105244-105244 被引量:2
标识
DOI:10.1016/j.autcon.2023.105244
摘要

In practice, object detection models used for construction site monitoring exhibit performance degradation owing to different monitoring settings and dynamic construction environments. Collecting and labeling images from new construction sites is necessary to mitigate these challenges; however, this requires significant resources. This paper presents an optimal domain-adaptive object detection model that employs an unsupervised domain adaptation approach to address the performance degradation challenges. Experiments were conducted at two construction sites to validate and identify the most effective domain-adaptive object detection model for construction sites. Several domain-adaptive object detection models have been developed, and our experimental results demonstrate that a hybrid approach, combining self-training and adversarial-based approaches improves the mean average precision by 12.8 and 7.1 over that of the baseline model at each construction site. These findings underscore the potential of domain adaptation-based methods to train object detection models in the construction domain, offering improved performance and reduced labeling efforts at specific target construction sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨自强发布了新的文献求助10
1秒前
东海虞明完成签到,获得积分10
2秒前
evak完成签到 ,获得积分10
2秒前
平常的不平给平常的不平的求助进行了留言
3秒前
柒月完成签到,获得积分10
3秒前
3秒前
3秒前
jiayou完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
棟仔超人完成签到,获得积分10
4秒前
科研通AI5应助czt采纳,获得10
5秒前
5秒前
feizai9527完成签到,获得积分10
5秒前
淡水痕完成签到,获得积分10
5秒前
hhhhhh完成签到,获得积分10
5秒前
z1完成签到 ,获得积分10
6秒前
7秒前
杨大大完成签到,获得积分10
7秒前
wyq完成签到 ,获得积分10
8秒前
8秒前
马铃薯发布了新的文献求助10
8秒前
林上草完成签到,获得积分10
8秒前
duan00100完成签到,获得积分10
8秒前
8秒前
Akim应助Dr.Tang采纳,获得10
9秒前
晨曦完成签到,获得积分10
9秒前
迟大猫应助细腻白柏采纳,获得10
9秒前
白白完成签到,获得积分10
10秒前
10秒前
10秒前
安静的难破完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
飞跃完成签到,获得积分10
11秒前
11秒前
11秒前
HEIKU应助热心的早晨采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678