化学空间
亲脂性
财产(哲学)
计算机科学
生物系统
功能(生物学)
空格(标点符号)
分子
理论(学习稳定性)
纳米技术
药物发现
化学
材料科学
机器学习
立体化学
生物
认识论
操作系统
哲学
有机化学
进化生物学
生物化学
作者
Brent A. Koscher,Richard B. Canty,Matthew A. McDonald,Kevin P. Greenman,Charles J. McGill,Camille L. Bilodeau,Wengong Jin,Haoyang Wu,Florence H. Vermeire,Brooke Jin,Travis Hart,Timothy Kulesza,Shih‐Cheng Li,Tommi Jaakkola,Regina Barzilay,Rafael Gómez‐Bombarelli,William H. Green,Klavs F. Jensen
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-12-21
卷期号:382 (6677)
被引量:35
标识
DOI:10.1126/science.adi1407
摘要
A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.
科研通智能强力驱动
Strongly Powered by AbleSci AI