Shape-Scale Co-Awareness Network for 3D Brain Tumor Segmentation

背景(考古学) 卷积神经网络 比例(比率) 分割 人工智能 特征(语言学) 计算机科学 图像分割 计算机视觉 匹配(统计) 形状上下文 空间语境意识 特征提取 模式识别(心理学) 图像(数学) 物理 数学 生物 统计 哲学 语言学 古生物学 量子力学
作者
Lifang Zhou,Yu Jiang,Weisheng Li,Jun Hu,Shenhai Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2495-2508 被引量:10
标识
DOI:10.1109/tmi.2024.3368531
摘要

The accurate segmentation of brain tumor is significant in clinical practice. Convolutional Neural Network (CNN)-based methods have made great progress in brain tumor segmentation due to powerful local modeling ability. However, brain tumors are frequently pattern-agnostic, i.e. variable in shape, size and location, which can not be effectively matched by traditional CNN-based methods with local and regular receptive fields. To address the above issues, we propose a shape-scale co-awareness network (S 2 CA-Net) for brain tumor segmentation, which can efficiently learn shape-aware and scale-aware features simultaneously to enhance pattern-agnostic representations. Primarily, three key components are proposed to accomplish the co-awareness of shape and scale. The Local-Global Scale Mixer (LGSM) decouples the extraction of local and global context by adopting the CNN-Former parallel structure, which contributes to obtaining finer hierarchical features. The Multi-level Context Aggregator (MCA) enriches the scale diversity of input patches by modeling global features across multiple receptive fields. The Multi-Scale Attentive Deformable Convolution (MS-ADC) learns the target deformation based on the multiscale inputs, which motivates the network to enforce feature constraints both in terms of scale and shape for optimal feature matching. Overall, LGSM and MCA focus on enhancing the scale-awareness of the network to cope with the size and location variations, while MS-ADC focuses on capturing deformation information for optimal shape matching. Finally, their effective integration prompts the network to perceive variations in shape and scale simultaneously, which can robustly tackle the variations in patterns of brain tumors. The experimental results on BraTS 2019, BraTS 2020, MSD BTS Task and BraTS2023-MEN show that S 2 CA-Net has superior overall performance in accuracy and efficiency compared to other state-of-the-art methods. Code: https://github.com/jiangyu945/S2CA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhaoyu发布了新的文献求助10
刚刚
wangqianyu发布了新的文献求助10
1秒前
2秒前
3秒前
香蕉完成签到,获得积分10
3秒前
3秒前
小郑发布了新的文献求助10
5秒前
5秒前
周梦琪完成签到,获得积分10
5秒前
隐形曼青应助ohnk采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
leonzhou发布了新的文献求助10
8秒前
鲸鱼发布了新的文献求助10
8秒前
9秒前
自信的若风完成签到,获得积分10
9秒前
soong0330完成签到,获得积分10
10秒前
10秒前
PPPhua发布了新的文献求助10
11秒前
11秒前
12秒前
FashionBoy应助Gabriel采纳,获得10
13秒前
hehe发布了新的文献求助10
14秒前
灵均发布了新的文献求助10
14秒前
15秒前
15秒前
所所应助小郑采纳,获得10
15秒前
思源应助朴素从安采纳,获得10
16秒前
16秒前
打打应助FleurdelisDZhang采纳,获得10
17秒前
Hu完成签到,获得积分10
18秒前
hehe完成签到,获得积分20
20秒前
Hu发布了新的文献求助10
21秒前
sci来来来发布了新的文献求助10
22秒前
ohnk发布了新的文献求助10
22秒前
leonzhou完成签到,获得积分10
23秒前
TINATINA完成签到,获得积分10
24秒前
wangqianyu完成签到,获得积分10
24秒前
Lucas应助memo采纳,获得10
25秒前
26秒前
酷波er应助苗条的成仁采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952646
求助须知:如何正确求助?哪些是违规求助? 3498064
关于积分的说明 11090366
捐赠科研通 3228670
什么是DOI,文献DOI怎么找? 1785032
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349