C(NH2)3Cd(C2O4)Cl(H2O)·H2O and BaCd(C2O4)1.5Cl(H2O)2: Two Oxalate Chlorides Obtained by Chemical Scissors Strategy Exhibiting Low-Dimensional Structural Networks and Balanced Overall Optical Properties
Low-dimensional crystalline materials have attracted much attention due to their special physical and chemical properties. Herein, two new oxalate chlorides, C(NH2)3Cd(C2O4)Cl(H2O)·H2O and BaCd(C2O4)1.5Cl(H2O)2, were synthesized. C(NH2)3Cd(C2O4)Cl(H2O)·H2O presents the unique {[Cd(C2O4)Cl(H2O)]−}∞ zigzag chain, while BaCd(C2O4)1.5Cl(H2O)2 shows a novel {[Cd(C2O4)1.5Cl]2–}∞ layer. They showed large measured band gaps, which were 3.76 and 4.53 eV, respectively, and the latter was the largest band gap in the A-M-C2O4-X (A = Monovalent cationic or alkaline earth metals, X = F, Cl, Br, I) family. They exhibit a large calculated birefringence of 0.075 and 0.096 at 1064 nm, respectively. This study promotes the exploration of synthesizing low-dimensional crystalline materials with balanced overall optical performances by a chemical scissors strategy.