Prediction of Drug-Target Interactions with High-Quality Negative Samples and A Network-Based Deep Learning Framework

计算机科学 二部图 人工智能 机器学习 人工神经网络 异构网络 图形 鉴定(生物学) 交互信息 数据挖掘 理论计算机科学 生物 电信 统计 无线网络 植物 数学 无线
作者
Zhixing Cheng,Deling Xu,Dewu Ding,Yanrui Ding
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/jbhi.2024.3354953
摘要

Identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared to traditional experimental methods, computer-based methods for predicting DTIs can significantly reduce the time and financial burdens of drug development. In recent years, numerous machine learning-based methods have been proposed for predicting potential DTIs. However, a common limitation among these methods is the absence of high-quality negative samples. Moreover, the effective extraction of multisource information of drugs and proteins for DTI prediction remains a significant challenge. In this paper, we investigated two aspects: the selection of high-quality negative samples and the construction of a high-performance DTI prediction framework. Specifically, we found two types of hidden biases when randomly selecting negative samples from unlabeled drug-protein pairs and proposed a negative sample selection approach based on complex network theory. Furthermore, we proposed a novel DTI prediction method named HNetPa-DTI, which integrates topological information from the drug-protein-disease heterogeneous network and gene ontology (GO) and pathway annotation information of proteins. Specifically, we extracted topological information of the drug-protein-disease heterogeneous network using heterogeneous graph neural networks, and obtained GO and pathway annotation information of proteins from the GO term semantic similarity networks, GO term-protein bipartite networks, and pathway-protein bipartite network using graph neural networks. Experimental results show that HNetPa-DTI outperforms the baseline methods on four types of prediction tasks, demonstrating the superiority of our method. Our code and datasets are available at https://github.com/study-czx/HNetPa-DTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助scofield采纳,获得10
刚刚
1秒前
安查得举报胡图图求助涉嫌违规
2秒前
2秒前
勤恳友灵完成签到,获得积分10
4秒前
李健应助HH采纳,获得10
4秒前
林天一发布了新的文献求助10
6秒前
Z1发布了新的文献求助10
7秒前
7秒前
12秒前
天天哥哥完成签到 ,获得积分10
12秒前
李爱国应助csr采纳,获得10
12秒前
深情安青应助壮观以松采纳,获得10
13秒前
科研通AI5应助锥子采纳,获得10
13秒前
xuxuxu发布了新的文献求助30
15秒前
科研通AI5应助啦啦啦啦采纳,获得10
15秒前
科研通AI5应助啦啦啦啦采纳,获得10
15秒前
16秒前
亦玉完成签到,获得积分10
16秒前
16秒前
17秒前
含糊的小日子完成签到,获得积分10
17秒前
萨尔莫斯完成签到,获得积分10
18秒前
思源应助清爽的冰淇淋采纳,获得10
18秒前
19秒前
ding应助kai采纳,获得10
19秒前
枫16发布了新的文献求助10
20秒前
byron发布了新的文献求助10
20秒前
20秒前
饭桶而已啊完成签到,获得积分10
20秒前
20秒前
太阳完成签到,获得积分10
21秒前
飞鱼发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
XYL完成签到,获得积分20
22秒前
22秒前
Lang777发布了新的文献求助10
23秒前
gu完成签到,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755384
求助须知:如何正确求助?哪些是违规求助? 3298445
关于积分的说明 10105664
捐赠科研通 3013093
什么是DOI,文献DOI怎么找? 1654979
邀请新用户注册赠送积分活动 789331
科研通“疑难数据库(出版商)”最低求助积分说明 753273