Topic-BiGRU-U-Net for Document-level Relation Extraction from Biomedical Literature

计算机科学 关系(数据库) 网(多面体) 萃取(化学) 情报检索 万维网 数据库 数学 色谱法 化学 几何学
作者
Yali Zhao,Rong Yan
标识
DOI:10.1109/bibm58861.2023.10385582
摘要

Document-level biomedical relation extraction refers to extract relationship facts from unstructured biomedical literature. Due to the fact that many relationship facts span multiple sentences and involve complex interactions between entities, it requires models with strong logical reasoning capabilities. However, previous methods have had limitations in terms of logical reasoning, such as lack logical reasoning and the entities merely based on a single granularity. Although other efforts are based on multiple granularity, including mention pairs and entity pairs, the inference mechanism is weak. In this paper, we propose a module to enhance the model's logical reasoning capabilities from four kinds of granularity (mention, entity, mention pairs, and entity pairs). Specifically, we encode the entities and mentions separately using BiGRU to capture contextual features. Simultaneously, we employ a U-Net network to model entity pairs and mention pairs, and enhance inter-sentence reasoning abilities. Additionally, to support the model's reasoning capabilities, we introduce topic nodes into the traditional heterogeneous graph to fully extract document information. Experimental results on CDR and GDA datasets in the biomedical field demonstrate the outstanding performance of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
润泽完成签到,获得积分10
1秒前
jixia发布了新的文献求助10
1秒前
缪甲烷完成签到,获得积分10
1秒前
1秒前
也许发布了新的文献求助10
2秒前
ffiu完成签到,获得积分10
2秒前
2秒前
CYT完成签到,获得积分10
2秒前
完美世界应助研友_Zr5Dpn采纳,获得10
3秒前
无私诗桃完成签到,获得积分10
3秒前
dipper完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
爆米花应助黑发挥会发黑采纳,获得10
4秒前
NexusExplorer应助W.采纳,获得10
4秒前
啦啦啦啦啦完成签到,获得积分10
4秒前
青荣发布了新的文献求助10
4秒前
漾漾发布了新的文献求助10
4秒前
虚拟初之完成签到,获得积分10
5秒前
西西完成签到,获得积分10
5秒前
科研小白完成签到 ,获得积分10
5秒前
不见高山完成签到,获得积分10
5秒前
Rondab应助panpan111采纳,获得10
5秒前
田様应助lemon采纳,获得10
5秒前
sugar完成签到,获得积分10
6秒前
SciGPT应助苏苏苏采纳,获得10
7秒前
离开时是天命完成签到,获得积分10
7秒前
lic完成签到,获得积分10
7秒前
小仙女发布了新的文献求助10
7秒前
蜡笔完成签到,获得积分10
8秒前
8秒前
ller发布了新的文献求助10
8秒前
chj完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
ccmaxp发布了新的文献求助10
9秒前
我是老大应助伶俐绿柏采纳,获得10
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530