亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of circulating plasma cells in peripheral blood using deep learning‐based morphological analysis

医学 骨髓 多发性骨髓瘤 技术员 外周血 再现性 病理 内科学 色谱法 电气工程 工程类 化学
作者
Pu Chen,Lan Zhang,Xinyi Cao,Xinyi Jin,Nan Chen,Li Zhang,Jianfeng Zhu,Baishen Pan,Beili Wang,Wei Guo
出处
期刊:Cancer [Wiley]
卷期号:130 (10): 1884-1893 被引量:4
标识
DOI:10.1002/cncr.35202
摘要

Abstract Background The presence of circulating plasma cells (CPCs) is an important laboratory indicator for the diagnosis, staging, risk stratification, and progression monitoring of multiple myeloma (MM). Early detection of CPCs in the peripheral blood (PB) followed by timely interventions can significantly improve MM prognosis and delay its progression. Although the conventional cell morphology examination remains the predominant method for CPC detection because of accessibility, its sensitivity and reproducibility are limited by technician expertise and cell quantity constraints. This study aims to develop an artificial intelligence (AI)–based automated system for a more sensitive and efficient CPC morphology detection. Methods A total of 137 bone marrow smears and 72 PB smears from patients with at Zhongshan Hospital, Fudan University, were retrospectively reviewed. Using an AI‐powered digital pathology platform, Morphogo, 305,019 cell images were collected for training. Morphogo’s efficacy in CPC detection was evaluated with additional 184 PB smears (94 from patients with MM and 90 from those with other hematological malignancies) and compared with manual microscopy. Results Morphogo achieved 99.64% accuracy, 89.03% sensitivity, and 99.68% specificity in classifying CPCs. At a 0.60 threshold, Morphogo achieved a sensitivity of 96.15%, which was approximately twice that of manual microscopy, with a specificity of 78.03%. Patients with CPCs detected by AI scanning had a significantly shorter median progression‐free survival compared with those without CPC detection (18 months vs. 34 months, p < .01). Conclusions Morphogo is a highly sensitive system for the automated detection of CPCs, with potential applications in initial screening, prognosis prediction, and posttreatment monitoring for MM patients. Plain Language Summary Diagnosing and monitoring multiple myeloma (MM), a type of blood cancer, requires identifying and quantifying specific cells called circulating plasma cells (CPCs) in the blood. The conventional method for detecting CPCs is manual microscopic examination, which is time‐consuming and lacks sensitivity. This study introduces a highly sensitive CPC detection method using an artificial intelligence–based system, Morphogo. It demonstrated remarkable sensitivity and accuracy, surpassing conventional microscopy. This advanced approach suggests that early and accurate CPC detection is achievable by morphology examination, making efficient CPC screening more accessible for patients with MM. This innovative system has the potential to be used in the diagnosis and risk assessment of MM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山姆弟弟完成签到 ,获得积分20
1秒前
zzh完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
10秒前
持卿应助CHENHL采纳,获得50
13秒前
夏虫语冰完成签到,获得积分10
14秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
23秒前
23秒前
24秒前
24秒前
ceeray23发布了新的文献求助20
28秒前
太阳啊发布了新的文献求助10
28秒前
xiuxiu完成签到 ,获得积分10
29秒前
打打应助成就的行云采纳,获得10
29秒前
32秒前
esyncoms完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
大模型应助太阳啊采纳,获得10
39秒前
dada完成签到 ,获得积分10
46秒前
51秒前
合一海盗完成签到,获得积分10
53秒前
醉书生应助科研通管家采纳,获得10
54秒前
共享精神应助科研通管家采纳,获得10
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
醉书生应助科研通管家采纳,获得10
54秒前
mmmmk发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助10
56秒前
科研通AI5应助Lu_ckilly采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Lu_ckilly发布了新的文献求助10
1分钟前
lalala完成签到,获得积分10
1分钟前
1分钟前
邓力发布了新的文献求助10
1分钟前
小付完成签到,获得积分10
1分钟前
02发布了新的文献求助10
1分钟前
科研通AI5应助硕小牛采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762737
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185