Semi-supervised Medical Image Segmentation via Feature-perturbed Consistency

计算机科学 分割 人工智能 杠杆(统计) 特征(语言学) 模式识别(心理学) 图像分割 卷积神经网络 一致性(知识库) 辍学(神经网络) 特征提取 机器学习 哲学 语言学
作者
Yang Yang,Ruixuan Wang,Tong Zhang,Jingyong Su
标识
DOI:10.1109/bibm58861.2023.10385966
摘要

Although deep convolutional neural networks have achieved satisfactory performance in many medical image segmentation tasks, a considerable annotation challenge still needs to be solved, which is expensive and time-consuming for radiologists. Most existing popular semi-supervised methods mainly impose data-level perturbations (e.g., rotation, noising) or feature-level perturbations (e.g., MC dropout) on unlabeled data. In this paper, we propose a novel semi-supervised segmentation strategy with meaningful perturbations at the feature level to leverage abundant useful information naturally embedded in the unlabeled data. Specifically, we develop a dual-task network where the segmentation head produces multiple predictions with a perturbation module, and the reconstruction head further utilizes the semantic information to enhance segmentation performance. The proposed framework subtly perturbs the network at the feature-level to generate predictions which should be similar and consistent. However, enforcing them roughly to be consistent at all pixels harms stable training and neglects much delicate information. To better utilize those predictions and estimate the uncertainty, we further propose feature-perturbed consistency to exploit reliable regions for our framework to learn from. Extensive experiments on the public BraTS2020 dataset and the 2017 ACDC dataset confirm the efficiency and effectiveness of our method. In particular, the proposed method demonstrates remarkable superiority in the segmentation of boundary regions. The project is available at https://github.com/youngyzzZ/SFPC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
shisui应助科研通管家采纳,获得30
刚刚
miumiu发布了新的文献求助10
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
佳佳应助科研通管家采纳,获得10
1秒前
shisui应助科研通管家采纳,获得30
1秒前
1秒前
yiiiping应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得50
1秒前
佳佳应助科研通管家采纳,获得10
1秒前
晨曦应助科研通管家采纳,获得30
1秒前
1秒前
yiiiping应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
佳佳应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得50
1秒前
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
佳佳应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
shisui应助科研通管家采纳,获得30
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
佳佳应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750756
求助须知:如何正确求助?哪些是违规求助? 5465712
关于积分的说明 15367939
捐赠科研通 4889850
什么是DOI,文献DOI怎么找? 2629420
邀请新用户注册赠送积分活动 1577683
关于科研通互助平台的介绍 1534066