亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Degradation model and attention guided distillation approach for low resolution face recognition

计算机科学 人工智能 面子(社会学概念) 卷积神经网络 模式识别(心理学) 面部识别系统 水准点(测量) 深度学习 鉴定(生物学) 降级(电信) 卷积(计算机科学) 计算机视觉 人工神经网络 生物 电信 植物 社会学 社会科学 地理 大地测量学
作者
Muhammad Muneeb Ullah,Imtiaz Ahmad Taj,Rana Hammad Raza
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:243: 122882-122882
标识
DOI:10.1016/j.eswa.2023.122882
摘要

Deep convolution neural networks (CNN) have shown their efficacy in face recognition tasks due to their ability to extract highly discriminant face representations from face images. On high-resolution benchmark datasets, outstanding identification and verification results have been achieved. However, the performance of these networks is significantly degraded when tested on low-resolution (LR) images such as those captured from surveillance cameras. A straightforward solution to this problem is to use both high-resolution (HR) images and corresponding down-sampled LR images during training. Although this strategy improves the performance of CNNs for LR images, it has some limitations. First, there is a significant difference between down-sampled LR images and LR images from surveillance cameras, leading to performance saturation at an earlier stage. Another limitation is the deterioration in the performance of HR images. In this work, solutions to both these limitations are proposed. A degradation model is proposed that synthesizes LR images from corresponding HR, emulating the real-world degradation effects in synthetic data, thus enabling the face recognition system to tolerate various blurry and noisy effects. To address the deterioration in the performance of HR images, an attention-guided distillation is proposed, which utilizes attention maps from convolutional layers in combination with deep features to transfer informative HR features from teacher to student network. The attention maps from the teacher network guide the student network to a better optimum and produce resolution robust face representations. The results of the proposed approach on the popular LR datasets like SCface, Coxface, and PaSC show that it outperforms the recent state-of-the-art (SOTA) techniques by a significant margin demonstrating its effectiveness for different cross-resolution scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chi_bio完成签到,获得积分10
8秒前
魏什么发布了新的文献求助10
10秒前
环走鱼尾纹完成签到 ,获得积分10
13秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得30
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
17秒前
天天快乐应助qiao采纳,获得10
19秒前
魏什么完成签到,获得积分20
22秒前
23秒前
ceeray23发布了新的文献求助20
23秒前
sunhealth发布了新的文献求助80
30秒前
情怀应助lvlv采纳,获得10
36秒前
47秒前
F_echo完成签到 ,获得积分10
48秒前
咸鱼lmye发布了新的文献求助10
53秒前
1分钟前
幽默尔蓝发布了新的文献求助10
1分钟前
1分钟前
星辰大海应助邬美杰采纳,获得10
1分钟前
wzzz发布了新的文献求助10
1分钟前
001完成签到,获得积分0
1分钟前
1分钟前
彭于晏应助已知中的未知采纳,获得10
1分钟前
SeoHan完成签到,获得积分10
1分钟前
lvlv发布了新的文献求助10
1分钟前
威武灵阳完成签到,获得积分10
1分钟前
钱都来完成签到 ,获得积分10
1分钟前
lvlv完成签到,获得积分10
1分钟前
kikichiu应助哭泣的尔冬采纳,获得30
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
自然的清涟应助柯擎汉采纳,获得10
1分钟前
003完成签到,获得积分10
1分钟前
吃了吃了完成签到,获得积分10
2分钟前
科研通AI6应助kosangel采纳,获得20
2分钟前
2分钟前
热情的觅云完成签到 ,获得积分10
2分钟前
合一海盗完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463234
求助须知:如何正确求助?哪些是违规求助? 4567954
关于积分的说明 14312159
捐赠科研通 4493857
什么是DOI,文献DOI怎么找? 2461920
邀请新用户注册赠送积分活动 1450910
关于科研通互助平台的介绍 1426115