已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Degradation model and attention guided distillation approach for low resolution face recognition

计算机科学 人工智能 面子(社会学概念) 卷积神经网络 模式识别(心理学) 面部识别系统 水准点(测量) 深度学习 鉴定(生物学) 降级(电信) 卷积(计算机科学) 计算机视觉 人工神经网络 生物 电信 植物 社会学 社会科学 地理 大地测量学
作者
Muhammad Muneeb Ullah,Imtiaz Ahmad Taj,Rana Hammad Raza
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:243: 122882-122882
标识
DOI:10.1016/j.eswa.2023.122882
摘要

Deep convolution neural networks (CNN) have shown their efficacy in face recognition tasks due to their ability to extract highly discriminant face representations from face images. On high-resolution benchmark datasets, outstanding identification and verification results have been achieved. However, the performance of these networks is significantly degraded when tested on low-resolution (LR) images such as those captured from surveillance cameras. A straightforward solution to this problem is to use both high-resolution (HR) images and corresponding down-sampled LR images during training. Although this strategy improves the performance of CNNs for LR images, it has some limitations. First, there is a significant difference between down-sampled LR images and LR images from surveillance cameras, leading to performance saturation at an earlier stage. Another limitation is the deterioration in the performance of HR images. In this work, solutions to both these limitations are proposed. A degradation model is proposed that synthesizes LR images from corresponding HR, emulating the real-world degradation effects in synthetic data, thus enabling the face recognition system to tolerate various blurry and noisy effects. To address the deterioration in the performance of HR images, an attention-guided distillation is proposed, which utilizes attention maps from convolutional layers in combination with deep features to transfer informative HR features from teacher to student network. The attention maps from the teacher network guide the student network to a better optimum and produce resolution robust face representations. The results of the proposed approach on the popular LR datasets like SCface, Coxface, and PaSC show that it outperforms the recent state-of-the-art (SOTA) techniques by a significant margin demonstrating its effectiveness for different cross-resolution scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheshire完成签到,获得积分10
刚刚
甜蜜暴徒发布了新的文献求助10
1秒前
fengdengjin发布了新的文献求助10
1秒前
LEL完成签到,获得积分10
1秒前
李健应助lizibelle采纳,获得10
1秒前
2秒前
研友_VZG7GZ应助ddddd采纳,获得10
3秒前
LEL发布了新的文献求助10
6秒前
风雨中飘摇应助人间冒险采纳,获得30
6秒前
顺利大可完成签到 ,获得积分10
6秒前
7秒前
Jeri完成签到 ,获得积分10
8秒前
9秒前
漂泊2025完成签到,获得积分10
9秒前
热情菠萝完成签到 ,获得积分10
10秒前
幸福大白发布了新的文献求助30
11秒前
miao2发布了新的文献求助10
13秒前
hyhyhyhy发布了新的文献求助10
13秒前
852应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
13秒前
王一琳发布了新的文献求助10
14秒前
科研通AI5应助赵欣月采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
16秒前
彭于晏应助hyhyhyhy采纳,获得10
18秒前
21秒前
怡然枫叶发布了新的文献求助10
22秒前
Rain完成签到,获得积分10
28秒前
29秒前
30秒前
33秒前
wcz发布了新的文献求助30
36秒前
现代书雪完成签到,获得积分10
37秒前
莫遥完成签到 ,获得积分10
40秒前
斯文败类应助务实的夏菡采纳,获得10
42秒前
脆脆鲨完成签到,获得积分10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994330
求助须知:如何正确求助?哪些是违规求助? 3534764
关于积分的说明 11266452
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749