Degradation model and attention guided distillation approach for low resolution face recognition

计算机科学 人工智能 面子(社会学概念) 卷积神经网络 模式识别(心理学) 面部识别系统 水准点(测量) 深度学习 鉴定(生物学) 降级(电信) 卷积(计算机科学) 计算机视觉 人工神经网络 生物 电信 植物 社会学 社会科学 地理 大地测量学
作者
Muhammad Muneeb Ullah,Imtiaz Ahmad Taj,Rana Hammad Raza
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:243: 122882-122882
标识
DOI:10.1016/j.eswa.2023.122882
摘要

Deep convolution neural networks (CNN) have shown their efficacy in face recognition tasks due to their ability to extract highly discriminant face representations from face images. On high-resolution benchmark datasets, outstanding identification and verification results have been achieved. However, the performance of these networks is significantly degraded when tested on low-resolution (LR) images such as those captured from surveillance cameras. A straightforward solution to this problem is to use both high-resolution (HR) images and corresponding down-sampled LR images during training. Although this strategy improves the performance of CNNs for LR images, it has some limitations. First, there is a significant difference between down-sampled LR images and LR images from surveillance cameras, leading to performance saturation at an earlier stage. Another limitation is the deterioration in the performance of HR images. In this work, solutions to both these limitations are proposed. A degradation model is proposed that synthesizes LR images from corresponding HR, emulating the real-world degradation effects in synthetic data, thus enabling the face recognition system to tolerate various blurry and noisy effects. To address the deterioration in the performance of HR images, an attention-guided distillation is proposed, which utilizes attention maps from convolutional layers in combination with deep features to transfer informative HR features from teacher to student network. The attention maps from the teacher network guide the student network to a better optimum and produce resolution robust face representations. The results of the proposed approach on the popular LR datasets like SCface, Coxface, and PaSC show that it outperforms the recent state-of-the-art (SOTA) techniques by a significant margin demonstrating its effectiveness for different cross-resolution scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不讲道理完成签到,获得积分10
刚刚
佐佐的2xL完成签到,获得积分10
1秒前
chentong完成签到,获得积分10
1秒前
SUNXI发布了新的文献求助10
1秒前
1秒前
王宝宝完成签到,获得积分10
1秒前
无限师发布了新的文献求助10
1秒前
研友_莫笑旋完成签到,获得积分10
2秒前
qwe完成签到,获得积分10
2秒前
帅的扣卡完成签到,获得积分10
2秒前
百里冰香发布了新的文献求助10
2秒前
NexusExplorer应助彩色焦采纳,获得10
2秒前
思源应助布响丸辣采纳,获得30
3秒前
3秒前
熙20团宝儿完成签到,获得积分10
3秒前
3秒前
Kaysen92完成签到,获得积分10
3秒前
xdf发布了新的文献求助10
3秒前
小也完成签到,获得积分10
4秒前
N维完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
骑着火车撵火箭完成签到,获得积分10
6秒前
zjh完成签到,获得积分10
6秒前
小璐璐呀完成签到,获得积分10
7秒前
春夏秋冬发布了新的文献求助10
7秒前
静静完成签到,获得积分10
7秒前
Dreamchaser完成签到,获得积分20
7秒前
7秒前
苹果完成签到,获得积分10
8秒前
学呀学完成签到 ,获得积分10
8秒前
Efficient完成签到 ,获得积分10
8秒前
称心采枫完成签到 ,获得积分0
8秒前
jichups完成签到,获得积分10
9秒前
桀桀桀完成签到,获得积分10
10秒前
10秒前
无线网发布了新的文献求助10
10秒前
幽默鱼完成签到,获得积分10
11秒前
淡定的太清完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077