Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy

肿瘤科 列线图 腺癌 医学 多西紫杉醇 免疫疗法 肺癌 转录组 内科学 癌症研究 生物 癌症 基因 基因表达 生物化学
作者
Shun Wang,Ruohuang Wang,Dingtao Hu,Cao-Xu Zhang,Peng Cao,Jie Huang
出处
期刊:npj precision oncology [Springer Nature]
卷期号:8 (1) 被引量:14
标识
DOI:10.1038/s41698-024-00538-5
摘要

Abstract Cancer cell growth, metastasis, and drug resistance pose significant challenges in the management of lung adenocarcinoma (LUAD). However, there is a deficiency in optimal predictive models capable of accurately forecasting patient prognoses and guiding the selection of targeted treatments. Programmed cell death (PCD) pathways play a pivotal role in the development and progression of various cancers, offering potential as prognostic indicators and drug sensitivity markers for LUAD patients. The development and validation of predictive models were conducted by integrating 13 PCD patterns with comprehensive analysis of bulk RNA, single-cell RNA transcriptomics, and pertinent clinicopathological details derived from TCGA-LUAD and six GEO datasets. Utilizing the machine learning algorithms, we identified ten critical differentially expressed genes associated with PCD in LUAD, namely CHEK2, KRT18, RRM2, GAPDH, MMP1, CHRNA5, TMPRSS4, ITGB4, CD79A, and CTLA4. Subsequently, we conducted a programmed cell death index (PCDI) based on these genes across the aforementioned cohorts and integrated this index with relevant clinical features to develop several prognostic nomograms. Furthermore, we observed a significant correlation between the PCDI and immune features in LUAD, including immune cell infiltration and the expression of immune checkpoint molecules. Additionally, we found that patients with a high PCDI score may exhibit resistance to immunotherapy and standard adjuvant chemotherapy regimens; however, they may benefit from other FDA-supported drugs such as docetaxel and dasatinib. In conclusion, the PCDI holds potential as a prognostic signature and can facilitate personalized treatment for LUAD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
拉长的傲旋应助哈哈哈采纳,获得20
2秒前
lmy完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
司藤完成签到 ,获得积分10
4秒前
5秒前
6秒前
壮观以松发布了新的文献求助10
6秒前
冰激凌完成签到,获得积分10
6秒前
巩琦完成签到,获得积分10
6秒前
7秒前
9秒前
夏爽2023发布了新的文献求助10
9秒前
ding应助彭珊采纳,获得10
10秒前
11秒前
13秒前
13秒前
14秒前
15秒前
汉堡包应助小胡西西采纳,获得10
15秒前
15秒前
吕如音发布了新的文献求助10
17秒前
啦啦啦完成签到,获得积分10
18秒前
19秒前
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
不配.应助科研通管家采纳,获得10
20秒前
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
20秒前
22秒前
22秒前
静待花开完成签到,获得积分10
24秒前
24秒前
朝阳发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469956
求助须知:如何正确求助?哪些是违规求助? 3063190
关于积分的说明 9081720
捐赠科研通 2753389
什么是DOI,文献DOI怎么找? 1510860
邀请新用户注册赠送积分活动 698134
科研通“疑难数据库(出版商)”最低求助积分说明 698056