已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable machine learning for predicting risk of invasive fungal infection in critically ill patients in the intensive care unit: A retrospective cohort study based on MIMIC-IV database

病危 重症监护室 重症监护医学 医学 队列 回顾性队列研究 重症监护 队列研究 急诊医学 内科学
作者
Yuan Cao,Yun Li,Min Wang,Lu Wang,Yuan Fang,Yiqi Wu,Yuyan Liu,Yixuan Liu,Ziqian Hao,Hengbo Gao,Hongjun Kang
出处
期刊:Shock [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/shk.0000000000002312
摘要

The delayed diagnosis of invasive fungal infection (IFI) is highly correlated with poor prognosis in patients. Early identification of high-risk patients with invasive fungal infections and timely implementation of targeted measures is beneficial for patients. The objective of this study was to develop a machine learning-based predictive model for invasive fungal infection in patients during their intensive care unit (ICU) stay. Retrospective data was extracted from adult patients in the MIMIC-IV database who spent a minimum of 48 h in the ICU. Feature selection was performed using LASSO regression, and the dataset was balanced using the BL-SMOTE approach. Predictive models were built using six machine learning algorithms. The Shapley additive explanation algorithm was used to assess the impact of various clinical features in the optimal model, enhancing interpretability. The study included 26,346 ICU patients, of whom 379 (1.44%) were diagnosed with invasive fungal infection. The predictive model was developed using 20 risk factors, and the dataset was balanced using the borderline-SMOTE (BL-SMOTE) algorithm. The BL-SMOTE random forest model demonstrated the highest predictive performance (area under curve = 0.88, 95% CI = 0.84-0.91). Shapley additive explanation analysis revealed that the three most influential clinical features in the BL-SMOTE random forest model were dialysis treatment, APSIII scores, and liver disease. The machine learning model provides a reliable tool for predicting the occurrence of IFI in ICU patients. The BL-SMOTE random forest model, based on 20 risk factors, exhibited superior predictive performance and can assist clinicians in early assessment of IFI occurrence in ICU patients. Importance: Invasive fungal infections are characterized by high incidence and high mortality rates characteristics. In this study, we developed a clinical prediction model for invasive fungal infections in critically ill patients based on machine learning algorithms. The results show that the machine learning model based on 20 clinical features has good predictive value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
令宏发布了新的文献求助10
刚刚
动听的琴发布了新的文献求助30
5秒前
6秒前
felix完成签到 ,获得积分10
9秒前
dew发布了新的文献求助10
10秒前
yunsww完成签到,获得积分10
12秒前
英俊的铭应助周舟采纳,获得30
17秒前
椰蓉面包糠完成签到,获得积分10
18秒前
彭于彦祖应助yunsww采纳,获得50
18秒前
爱科学完成签到 ,获得积分10
18秒前
19秒前
令宏发布了新的文献求助10
19秒前
彩色的襄发布了新的文献求助10
19秒前
20秒前
21秒前
哈哈哈哈完成签到,获得积分10
21秒前
April发布了新的文献求助10
22秒前
26秒前
燕晓啸完成签到 ,获得积分0
27秒前
友芸完成签到 ,获得积分10
31秒前
狮子清明尊完成签到,获得积分10
31秒前
beplayer1完成签到,获得积分10
32秒前
莓烦恼完成签到 ,获得积分10
33秒前
momochichu发布了新的文献求助10
33秒前
小谢完成签到,获得积分10
34秒前
tingtingzhang完成签到 ,获得积分10
39秒前
蝴蝶完成签到 ,获得积分10
43秒前
传统的怀薇完成签到 ,获得积分10
44秒前
风里有声音完成签到 ,获得积分10
47秒前
赘婿应助sxhlrm采纳,获得10
48秒前
动听的琴完成签到,获得积分10
48秒前
50秒前
50秒前
研友_850aeZ完成签到,获得积分0
52秒前
NexusExplorer应助April采纳,获得10
52秒前
liangyong发布了新的文献求助10
55秒前
57秒前
57秒前
CipherSage应助kytm采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965493
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155140
捐赠科研通 3245287
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176