清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interpretable machine learning for predicting risk of invasive fungal infection in critically ill patients in the intensive care unit: A retrospective cohort study based on MIMIC-IV database

病危 重症监护室 重症监护医学 医学 队列 回顾性队列研究 重症监护 队列研究 急诊医学 内科学
作者
Yuan Cao,Yun Li,Min Wang,Lu Wang,Yuan Fang,Yiqi Wu,Yuyan Liu,Yixuan Liu,Ziqian Hao,Hengbo Gao,Hongjun Kang
出处
期刊:Shock [Lippincott Williams & Wilkins]
被引量:4
标识
DOI:10.1097/shk.0000000000002312
摘要

The delayed diagnosis of invasive fungal infection (IFI) is highly correlated with poor prognosis in patients. Early identification of high-risk patients with invasive fungal infections and timely implementation of targeted measures is beneficial for patients. The objective of this study was to develop a machine learning-based predictive model for invasive fungal infection in patients during their intensive care unit (ICU) stay. Retrospective data was extracted from adult patients in the MIMIC-IV database who spent a minimum of 48 h in the ICU. Feature selection was performed using LASSO regression, and the dataset was balanced using the BL-SMOTE approach. Predictive models were built using six machine learning algorithms. The Shapley additive explanation algorithm was used to assess the impact of various clinical features in the optimal model, enhancing interpretability. The study included 26,346 ICU patients, of whom 379 (1.44%) were diagnosed with invasive fungal infection. The predictive model was developed using 20 risk factors, and the dataset was balanced using the borderline-SMOTE (BL-SMOTE) algorithm. The BL-SMOTE random forest model demonstrated the highest predictive performance (area under curve = 0.88, 95% CI = 0.84-0.91). Shapley additive explanation analysis revealed that the three most influential clinical features in the BL-SMOTE random forest model were dialysis treatment, APSIII scores, and liver disease. The machine learning model provides a reliable tool for predicting the occurrence of IFI in ICU patients. The BL-SMOTE random forest model, based on 20 risk factors, exhibited superior predictive performance and can assist clinicians in early assessment of IFI occurrence in ICU patients. Importance: Invasive fungal infections are characterized by high incidence and high mortality rates characteristics. In this study, we developed a clinical prediction model for invasive fungal infections in critically ill patients based on machine learning algorithms. The results show that the machine learning model based on 20 clinical features has good predictive value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分20
19秒前
蝎子莱莱xth完成签到,获得积分10
32秒前
氢锂钠钾铷铯钫完成签到,获得积分10
38秒前
Square完成签到,获得积分10
45秒前
47秒前
牛的滑发布了新的文献求助10
51秒前
Hello应助牛的滑采纳,获得10
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
Owen应助菜菜子采纳,获得10
1分钟前
1分钟前
菜菜子发布了新的文献求助10
1分钟前
zcbb完成签到,获得积分10
1分钟前
菜菜子完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
usami42完成签到,获得积分10
2分钟前
2分钟前
drirshad完成签到,获得积分10
2分钟前
无奈代秋完成签到,获得积分10
3分钟前
赘婿应助无奈代秋采纳,获得10
3分钟前
3分钟前
4分钟前
无奈代秋发布了新的文献求助10
4分钟前
Zhu完成签到 ,获得积分10
4分钟前
Yini应助科研通管家采纳,获得100
4分钟前
lzy完成签到,获得积分10
5分钟前
Akim应助科研通管家采纳,获得10
6分钟前
nbtzy完成签到,获得积分10
7分钟前
研友_拓跋戾完成签到,获得积分10
7分钟前
汉堡包应助研友_拓跋戾采纳,获得10
7分钟前
量子星尘发布了新的文献求助50
7分钟前
方白秋完成签到,获得积分0
7分钟前
8分钟前
ljl86400完成签到,获得积分10
8分钟前
星辰大海应助科研通管家采纳,获得10
8分钟前
多亿点完成签到 ,获得积分10
10分钟前
usami42发布了新的文献求助10
10分钟前
lovelife完成签到,获得积分10
11分钟前
开心每一天完成签到 ,获得积分10
11分钟前
披着羊皮的狼完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910339
求助须知:如何正确求助?哪些是违规求助? 4186233
关于积分的说明 12999210
捐赠科研通 3953640
什么是DOI,文献DOI怎么找? 2168011
邀请新用户注册赠送积分活动 1186464
关于科研通互助平台的介绍 1093597