Interpretable machine learning for predicting risk of invasive fungal infection in critically ill patients in the intensive care unit: A retrospective cohort study based on MIMIC-IV database

病危 重症监护室 重症监护医学 医学 队列 回顾性队列研究 入射(几何) 预测值 侵袭性念珠菌病 危重病 机器学习 急诊医学 人工智能 计算机科学 内科学 抗真菌 物理 氟康唑 皮肤病科 光学
作者
Yuan Cao,Yun Li,Min Wang,Lu Wang,Yuan Fang,Yiqi Wu,Yuyan Liu,Yixuan Liu,Ziqian Hao,Hengbo Gao,Hongjun Kang
出处
期刊:Shock [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/shk.0000000000002312
摘要

Abstract The delayed diagnosis of invasive fungal infection (IFI) is highly correlated with poor prognosis in patients. Early identification of high-risk patients with invasive fungal infections and timely implementation of targeted measures is beneficial for patients. The objective of this study was to develop a machine learning-based predictive model for invasive fungal infection in patients during their Intensive Care Unit (ICU) stay. Retrospective data was extracted from adult patients in the MIMIC-IV database who spent a minimum of 48 hours in the ICU. Feature selection was performed using LASSO regression, and the dataset was balanced using the BL-SMOTE approach. Predictive models were built using six machine learning algorithms. The Shapley additive explanation (SHAP) algorithm was employed to assess the impact of various clinical features in the optimal model, enhancing interpretability. The study included 26,346 ICU patients, of whom 379 (1.44%) were diagnosed with invasive fungal infection. The predictive model was developed using 20 risk factors, and the dataset was balanced using the borderline-SMOTE (BL-SMOTE) algorithm. The BL-SMOTE random forest model demonstrated the highest predictive performance (AUC 0.88, 95% CI: 0.84-0.91). SHAP analysis revealed that the three most influential clinical features in the BL-SMOTE random forest model were dialysis treatment, APSIII scores, and liver disease. The machine learning model provides a reliable tool for predicting the occurrence of IFI in ICU patients. The BL-SMOTE random forest model, based on 20 risk factors, exhibited superior predictive performance and can assist clinicians in early assessment of IFI occurrence in ICU patients. Importance Invasive fungal infections are characterized by high incidence and high mortality rates characteristics. In this study, we developed a clinical prediction model for invasive fungal infections in critically ill patients based on machine learning algorithms. The results show that the machine learning model based on 20 clinical features has good predictive value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助by采纳,获得10
2秒前
酷波er应助程老板采纳,获得10
2秒前
大熊完成签到,获得积分10
4秒前
5秒前
5秒前
云瑾完成签到,获得积分0
5秒前
fa完成签到,获得积分10
6秒前
闪闪的鹏博完成签到,获得积分10
6秒前
panda完成签到,获得积分10
6秒前
风中晓露发布了新的文献求助30
6秒前
wgcheng发布了新的文献求助10
7秒前
嘻yyy完成签到 ,获得积分10
7秒前
羲合发布了新的文献求助10
8秒前
大意的糜发布了新的文献求助10
8秒前
芜湖完成签到 ,获得积分10
8秒前
科研修沟发布了新的文献求助10
8秒前
9秒前
东海虞明完成签到,获得积分10
11秒前
11秒前
清都山水郎完成签到,获得积分10
12秒前
机智的曼易完成签到 ,获得积分10
14秒前
14秒前
罗静发布了新的文献求助10
15秒前
car子完成签到 ,获得积分10
16秒前
美好丹妗发布了新的文献求助10
18秒前
katy关注了科研通微信公众号
19秒前
sdasd发布了新的文献求助10
20秒前
yordeabese完成签到,获得积分10
21秒前
风中晓露完成签到,获得积分10
21秒前
gxqqqqqqq应助水煮蛋采纳,获得10
22秒前
ppprotein完成签到,获得积分10
22秒前
24秒前
25秒前
福娃完成签到,获得积分10
25秒前
by发布了新的文献求助10
27秒前
27秒前
purple1212完成签到,获得积分10
28秒前
启航完成签到,获得积分10
28秒前
29秒前
小小完成签到,获得积分10
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388