过电位
电解质
材料科学
硫化
硫黄
纳米颗粒
阳极
纳米技术
氢氧化物
析氧
无定形固体
电流密度
化学工程
冶金
化学
工程类
结晶学
电化学
电极
物理化学
量子力学
物理
作者
Bin Chen,Tao Liu,Junfeng Zhang,Shichao Zhao,Runfei Yue,Sipu Wang,Lianqin Wang,Zhihao Chen,Yingjie Feng,Jun Huang,Yan Yin,Michael D. Guiver
出处
期刊:Small
[Wiley]
日期:2024-02-23
标识
DOI:10.1002/smll.202310737
摘要
Using powder-based ink appears to be the most suitable candidate for commercializing the membrane electrode assembly (MEA), while research on the powder-based NPM catalyst for anion exchange membrane water electrolyzer (AEMWE) is currently insufficient, especially at high current density. Herein, a sulfur source (NiFe Layered double hydroxide adsorbed SO42-${\mathrm{SO}}_4^{2 - }$ ) confinement strategy is developed to integrate Ni3 S2 onto the surface of amorphous/crystalline NiFe alloy nanoparticles (denoted NiFe/Ni-S), achieving advanced control over the sulfidation process for the formation of metal sulfides. The constructed interface under the sulfur source confinement strategy generates abundant active sites that increase electron transport at the electrode-electrolyte interface and improve ability over an extended period at a high current density. Consequently, the constructed NiFe/Ni-S delivers an ultra-low overpotential of 239 mV at 10 mA cm-2 and 0.66 mA cmECSA-2${\mathrm{cm}}_{{\mathrm{ECSA}}}^{ - 2}$ under an overpotential of 300 mV. The AEMWE with NiFe/Ni-S anode exhibits a cell voltage of 1.664 V @ 0.5 A cm-2 and a 400 h stability at 1.0 A cm-2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI