Reliability analysis in distribution system by deep belief neural network

可靠性(半导体) 人工神经网络 可靠性工程 人工智能 计算机科学 工程类 量子力学 物理 功率(物理)
作者
R. Likhitha,E. Prathibha,Md. Irfan Ali,Aswathnarayana Manjunatha
出处
期刊:Bulletin of Electrical Engineering and Informatics [Institute of Advanced Engineering and Science]
卷期号:13 (2): 753-761
标识
DOI:10.11591/eei.v13i2.6324
摘要

Rapid increase in the usage of intermittent renewable energy, ongoing changes in electrical power system structure and operational needs posing growing problems while ensuring adequate service reliability and retaining the quality of power. Power system reliability is a pertinent factor to consider while planning, designing, and operating distribution systems. utilities are obligated to offer their customers uninterrupted electrical service at the least cost while maintaining a satisfactory level of service quality. The important metrics for gauging the effect of distributed renewable energy on distribution networks is reliability analysis. Reliability analysis in distribution systems involves evaluating the performance and robustness of electrical distribution networks. An artificial intelligence approach is implemented in this paper to improve reliability analysis with dispersed generations in distribution network. Deep belief neural networks (DBNNs) are a type of artificial neural network that can be used for various tasks, including analyzing complex data such as those found in power distribution systems. This paper integrated a DBNN using a particle swarm optimization (PSO) technique. The proposed model performance is assessed using mean square error, mean absolute error, root mean square error, and R squared error. The findings reveal that reliability analysis with this novel technique is more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shanika应助aaaaaa采纳,获得10
1秒前
在水一方应助aaaaaa采纳,获得10
1秒前
1秒前
忆枫发布了新的文献求助10
2秒前
12345发布了新的文献求助10
3秒前
4秒前
4秒前
yar应助lixinyue采纳,获得10
5秒前
pluto应助超帅亦寒采纳,获得30
6秒前
迷你的面包完成签到,获得积分10
8秒前
9秒前
9秒前
精灵发布了新的文献求助10
9秒前
梦隐雾完成签到,获得积分10
10秒前
希望天下0贩的0应助yang采纳,获得10
10秒前
李健应助高兴曼寒采纳,获得10
10秒前
弯弯完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
直率月亮完成签到,获得积分10
18秒前
liii发布了新的文献求助10
19秒前
19秒前
19秒前
zjz9928完成签到,获得积分10
19秒前
万能图书馆应助精灵采纳,获得10
19秒前
NINISO完成签到,获得积分10
20秒前
ZDZ发布了新的文献求助10
21秒前
sci发布了新的文献求助50
22秒前
粒粒2发布了新的文献求助30
22秒前
敏感板栗完成签到,获得积分10
23秒前
123发布了新的文献求助10
26秒前
小风铃完成签到,获得积分10
26秒前
sci完成签到,获得积分10
27秒前
ZDZ完成签到,获得积分10
27秒前
上官若男应助qizhang采纳,获得30
28秒前
YamDaamCaa应助七七丫采纳,获得30
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432