材料科学
协调球
硼
Atom(片上系统)
催化作用
金属
密度泛函理论
析氧
化学物理
协调数
计算化学
冶金
离子
物理化学
有机化学
电化学
计算机科学
化学
电极
嵌入式系统
作者
Zhe Wang,Ruojie Xu,Qitong Ye,Xiaoyan Jin,Zhe Lü,Zhenbei Yang,Yong Wang,Tao Yan,Yipu Liu,Zhijuan Pan,Seong‐Ju Hwang,Hong Jin Fan
标识
DOI:10.1002/adfm.202315376
摘要
Abstract It is important to tune the coordination configuration of dual‐atom catalyst (DAC), especially in the first coordination sphere, to render high intrinsic catalytic activities for oxygen reduction/evolution reactions (ORR/OER). Herein, a type of atomically dispersed and boron‐coordinated DAC structure, namely, FeN 4 B‐NiN 4 B dual sites, is reported. In this structure, the incorporation of boron into the first coordination sphere of FeN 4 /NiN 4 atomic sites regulates its geometry and electronic structure by forming “Fe‐B‐N” and “Ni‐B‐N” bridges. The FeN 4 B‐NiN 4 B DAC exhibits much enhanced ORR and OER property compared to the FeN 4 ‐NiN 4 counterparts. Density functional theory calculations reveal that the boron‐induced charge transfer and asymmetric charge distributions of the central Fe/Ni atoms optimize the adsorption and desorption behavior of the ORR/OER intermediates and reduce the activation energy for the potential‐determining step. Zinc‐air batteries employing the FeN 4 B‐NiN 4 B cathode exhibit a high maximum power density (236.9 mW cm −2 ) and stable cyclability up to 1100 h. The result illustrates the pivotal role of the first‐coordination sphere of DACs in tuning the electrochemical energy conversion and storage activities.
科研通智能强力驱动
Strongly Powered by AbleSci AI