重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Enhancement of energy and cost efficiency in wastewater treatment plants using hybrid bio-inspired machine learning control techniques

污水处理 废水 水准点(测量) 环境工程 流出物 控制器(灌溉) 能源消耗 环境科学 生产(经济) 工程类 环境经济学 宏观经济学 经济 农学 电气工程 地理 生物 大地测量学
作者
Jean Gabain Ateunkeng,Alexandre Teplaira Boum,Laurent Bitjoka
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:12 (3): 112496-112496 被引量:1
标识
DOI:10.1016/j.jece.2024.112496
摘要

Global population growth drives demand for clean water, energy, and wastewater production in urban areas. Most existing wastewater treatment plants (WWTPs) are energy- and cost-intensive. To achieve the UN Sustainable Development Goals (SDGs) by 2030, many regions have implemented strict policies for energy consumption and contaminated water discharge, promoting environmental sustainability. This paper attempts to enhance the achievement of SDGs in the wastewater treatment industry by proposing a novel method for hierarchical control of wastewater treatment plants to ensure energy and cost efficiency with less knowledge of the process model, fewer measurements, and fewer control loops. This controller is the combination of a machine learning control technique with a bio-inspired computational algorithm. To evaluate and validate the performance of the proposed controller on the WWTP, the benchmark simulation model no. 1 (BSM1) has been used. The most significant contributions of this paper show that 488.96 KWh/d, 3620.08 Kg/d, and 3454.55 KWh/d of aeration energy cost index, sludge production cost index, and operational cost index are respectively saved when compared to the default control strategy (DCS). Also, 893.69 Kg pollution units per day of effluent fine-related costs have been successfully recovered when compared to the DCS. The experimental results illustrate that the proposed control yields significant amelioration of the energy and cost profile of the WWTP with no effluent violation in dry, rain, and storm weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
希望天下0贩的0应助Goolk采纳,获得10
1秒前
1秒前
coldpp发布了新的文献求助10
1秒前
芝士小熊完成签到 ,获得积分10
2秒前
李佳烨完成签到,获得积分10
2秒前
顾矜应助忐忑的凝云采纳,获得10
3秒前
高铭泽完成签到,获得积分10
4秒前
4秒前
4秒前
PINO完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
DrWho发布了新的文献求助10
5秒前
wwwwww发布了新的文献求助10
6秒前
6秒前
加菲丰丰应助悦耳冰萍采纳,获得60
6秒前
浮游应助Seven采纳,获得20
6秒前
7秒前
jz发布了新的文献求助10
7秒前
7秒前
爆米花应助无限绮南采纳,获得10
7秒前
Song发布了新的文献求助30
7秒前
脑洞疼应助dfsdf采纳,获得10
7秒前
Owen应助璐璇采纳,获得10
8秒前
suns完成签到,获得积分10
8秒前
abb先生发布了新的文献求助150
8秒前
随随完成签到 ,获得积分10
8秒前
9秒前
10秒前
Eve发布了新的文献求助10
10秒前
10秒前
蒋庆完成签到,获得积分10
10秒前
Zx_1993应助FLZLC采纳,获得20
10秒前
缓慢迎波完成签到,获得积分10
11秒前
Orange应助可靠月亮采纳,获得10
11秒前
12秒前
鳗鱼雨寒完成签到,获得积分20
12秒前
12秒前
大胆诗云完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567