清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-organ spatiotemporal information aware model for sepsis mortality prediction

计算机科学 败血症 稳健性(进化) 器官功能障碍 重症监护室 重症监护医学 数据挖掘 医学 机器学习 内科学 生物化学 化学 基因
作者
Xue Feng,Siyi Zhu,Yanfei Shen,Huaiping Zhu,Molei Yan,Guolong Cai,Gangmin Ning
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102746-102746
标识
DOI:10.1016/j.artmed.2023.102746
摘要

Sepsis is a syndrome involving multi-organ dysfunction, and the mortality in sepsis patients correlates with the number of lesioned organs. Precise prognosis models play a pivotal role in enabling healthcare practitioners to administer timely and accurate interventions for sepsis, thereby augmenting patient outcomes. Nevertheless, the majority of available models consider the overall physiological attributes of patients, overlooking the asynchronous spatiotemporal interactions among multiple organ systems. These constraints hinder a full application of such models, particularly when dealing with limited clinical data. To surmount these challenges, a comprehensive model, denoted as recurrent Graph Attention Network-multi Gated Recurrent Unit (rGAT-mGRU), was proposed. Taking into account the intricate spatiotemporal interactions among multiple organ systems, the model predicted in-hospital mortality of sepsis using data collected within the 48-hour period post-diagnosis. Multiple parallel GRU sub-models were formulated to investigate the temporal physiological variations of single organ systems. Meanwhile, a GAT structure featuring a memory unit was constructed to capture spatiotemporal connections among multi-organ systems. Additionally, an attention-injection mechanism was employed to govern the data flowing within the network pertaining to multi-organ systems. The proposed model underwent training and testing using a dataset of 10,181 sepsis cases extracted from the Medical Information Mart for Intensive Care III (MIMIC-III) database. To evaluate the model's superiority, it was compared with the existing common baseline models. Furthermore, ablation experiments were designed to elucidate the rationale and robustness of the proposed model. Compared with the baseline models for predicting mortality of sepsis, the rGAT-mGRU model demonstrated the largest area under the receiver operating characteristic curve (AUROC) of 0.8777 ± 0.0039 and the maximum area under the precision-recall curve (AUPRC) of 0.5818 ± 0.0071, with sensitivity of 0.8358 ± 0.0302 and specificity of 0.7727 ± 0.0229, respectively. The proposed model was capable of delineating the varying contribution of the involved organ systems at distinct moments, as specifically illustrated by the attention weights. Furthermore, it exhibited consistent performance even in the face of limited clinical data. The rGAT-mGRU model has the potential to indicate sepsis prognosis by extracting the dynamic spatiotemporal interplay information inherent in multi-organ systems during critical diseases, thereby providing clinicians with auxiliary decision-making support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未完成完成签到,获得积分10
25秒前
zzgpku完成签到,获得积分0
30秒前
水兰色完成签到,获得积分10
38秒前
英喆完成签到 ,获得积分10
52秒前
JJ完成签到 ,获得积分10
1分钟前
mito完成签到,获得积分10
1分钟前
胜天半子完成签到 ,获得积分10
1分钟前
yingzaifeixiang完成签到 ,获得积分10
1分钟前
华仔应助Logan采纳,获得10
2分钟前
李健的小迷弟应助yehata采纳,获得30
2分钟前
kdjm688完成签到,获得积分10
2分钟前
2分钟前
yehata发布了新的文献求助30
2分钟前
huangzsdy完成签到,获得积分10
2分钟前
2分钟前
Petrichor发布了新的文献求助10
2分钟前
3分钟前
Logan完成签到,获得积分10
3分钟前
月儿完成签到 ,获得积分10
3分钟前
3分钟前
Petrichor完成签到,获得积分10
3分钟前
Logan发布了新的文献求助10
3分钟前
3分钟前
yehata完成签到,获得积分10
3分钟前
熊如懿小主完成签到 ,获得积分10
3分钟前
玛卡巴卡完成签到 ,获得积分10
3分钟前
儒雅的夏翠完成签到,获得积分10
3分钟前
稳重傲晴完成签到 ,获得积分10
3分钟前
淡淡醉波wuliao完成签到 ,获得积分10
3分钟前
hacclcc发布了新的文献求助10
3分钟前
Young完成签到 ,获得积分10
3分钟前
妮子拉完成签到,获得积分10
4分钟前
葫芦芦芦完成签到 ,获得积分10
4分钟前
小王完成签到 ,获得积分10
4分钟前
gobi完成签到 ,获得积分10
4分钟前
ZFW完成签到 ,获得积分10
4分钟前
DJ_Tokyo完成签到,获得积分10
4分钟前
高高的巨人完成签到 ,获得积分10
4分钟前
a46539749完成签到 ,获得积分10
5分钟前
jnoker完成签到 ,获得积分10
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491367
求助须知:如何正确求助?哪些是违规求助? 3077983
关于积分的说明 9151302
捐赠科研通 2770610
什么是DOI,文献DOI怎么找? 1520544
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702323