Learning to Embed Time Series Patches Independently

计算机科学 推论 人工智能 系列(地层学) 代表(政治) 变压器 时间序列 机器学习 特征学习 编码(集合论) 简单(哲学) 模式识别(心理学) 程序设计语言 生物 法学 政治学 政治 电压 量子力学 认识论 集合(抽象数据类型) 物理 哲学 古生物学
作者
Seunghan Lee,Taeyoung Park,Kibok Lee
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2312.16427
摘要

Masked time series modeling has recently gained much attention as a self-supervised representation learning strategy for time series. Inspired by masked image modeling in computer vision, recent works first patchify and partially mask out time series, and then train Transformers to capture the dependencies between patches by predicting masked patches from unmasked patches. However, we argue that capturing such patch dependencies might not be an optimal strategy for time series representation learning; rather, learning to embed patches independently results in better time series representations. Specifically, we propose to use 1) the simple patch reconstruction task, which autoencode each patch without looking at other patches, and 2) the simple patch-wise MLP that embeds each patch independently. In addition, we introduce complementary contrastive learning to hierarchically capture adjacent time series information efficiently. Our proposed method improves time series forecasting and classification performance compared to state-of-the-art Transformer-based models, while it is more efficient in terms of the number of parameters and training/inference time. Code is available at this repository: https://github.com/seunghan96/pits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JamesPei应助huang采纳,获得10
2秒前
快乐木木完成签到,获得积分10
3秒前
4秒前
张张完成签到 ,获得积分10
4秒前
脑洞疼应助xu采纳,获得10
4秒前
海盐芝士完成签到 ,获得积分10
5秒前
zyyxx完成签到 ,获得积分10
6秒前
Wvzzzzz发布了新的文献求助10
6秒前
EWFDSC完成签到 ,获得积分10
6秒前
小明完成签到,获得积分20
7秒前
JQing发布了新的文献求助10
9秒前
阳光大有完成签到,获得积分10
13秒前
王博完成签到,获得积分10
15秒前
阜睿发布了新的文献求助10
15秒前
隐形曼青应助彭三忘采纳,获得10
16秒前
jinxiao完成签到,获得积分10
17秒前
赘婿应助鱼籽采纳,获得10
18秒前
18秒前
18秒前
19秒前
怡然远望完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
wanci应助cyj123采纳,获得30
22秒前
淡定青槐完成签到 ,获得积分10
22秒前
22秒前
23秒前
orixero应助勤奋的大米采纳,获得10
23秒前
嘿嘿应助英勇羿采纳,获得10
24秒前
wuyaRY发布了新的文献求助10
25秒前
陈晶完成签到 ,获得积分10
26秒前
七七发布了新的文献求助10
27秒前
29秒前
jinxiao发布了新的文献求助10
29秒前
29秒前
迟山完成签到 ,获得积分10
29秒前
32秒前
32秒前
冰露发布了新的文献求助10
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449234
求助须知:如何正确求助?哪些是违规求助? 4557441
关于积分的说明 14263406
捐赠科研通 4480448
什么是DOI,文献DOI怎么找? 2454464
邀请新用户注册赠送积分活动 1445168
关于科研通互助平台的介绍 1420965